Logo Search packages:      
Sourcecode: r-base-core-ra version File versions  Download package

portsrc.f

      SUBROUTINE  DRN2G(D, DR, IV, LIV, LV, N, ND, N1, N2, P, R,
     1                  RD, V, X)
C
C *** REVISED ITERATION DRIVER FOR NL2SOL (VERSION 2.3) ***
C
      INTEGER LIV, LV, N, ND, N1, N2, P
      INTEGER IV(LIV)
      DOUBLE PRECISION D(P), DR(ND,P), R(ND), RD(ND), V(LV), X(P)
C
C--------------------------  PARAMETER USAGE  --------------------------
C
C D........ SCALE VECTOR.
C DR....... DERIVATIVES OF R AT X.
C IV....... INTEGER VALUES ARRAY.
C LIV...... LENGTH OF IV... LIV MUST BE AT LEAST P + 82.
C LV....... LENGTH OF V...  LV  MUST BE AT LEAST 105 + P*(2*P+16).
C N........ TOTAL NUMBER OF RESIDUALS.
C ND....... MAX. NO. OF RESIDUALS PASSED ON ONE CALL.
C N1....... LOWEST  ROW INDEX FOR RESIDUALS SUPPLIED THIS TIME.
C N2....... HIGHEST ROW INDEX FOR RESIDUALS SUPPLIED THIS TIME.
C P........ NUMBER OF PARAMETERS (COMPONENTS OF X) BEING ESTIMATED.
C R........ RESIDUALS.
C RD....... RD(I) = SQRT(G(I)**T * H(I)**-1 * G(I)) ON OUTPUT WHEN
C        IV(RDREQ) IS NONZERO.   DRN2G SETS IV(REGD) = 1 IF RD
C        IS SUCCESSFULLY COMPUTED, TO 0 IF NO ATTEMPT WAS MADE
C        TO COMPUTE IT, AND TO -1 IF H (THE FINITE-DIFFERENCE HESSIAN)
C        WAS INDEFINITE.  IF ND .GE. N, THEN RD IS ALSO USED AS
C        TEMPORARY STORAGE.
C V........ FLOATING-POINT VALUES ARRAY.
C X........ PARAMETER VECTOR BEING ESTIMATED (INPUT = INITIAL GUESS,
C             OUTPUT = BEST VALUE FOUND).
C
C  ***  DISCUSSION  ***
C
C  NOTE... NL2SOL AND NL2ITR (MENTIONED BELOW) ARE DESCRIBED IN
C  ACM TRANS. MATH. SOFTWARE, VOL. 7, PP. 369-383 (AN ADAPTIVE
C  NONLINEAR LEAST-SQUARES ALGORITHM, BY J.E. DENNIS, D.M. GAY,
C  AND R.E. WELSCH).
C
C     THIS ROUTINE CARRIES OUT ITERATIONS FOR SOLVING NONLINEAR
C  LEAST SQUARES PROBLEMS.  WHEN ND = N, IT IS SIMILAR TO NL2ITR
C  (WITH J = DR), EXCEPT THAT R(X) AND DR(X) NEED NOT BE INITIALIZED
C  WHEN  DRN2G IS CALLED WITH IV(1) = 0 OR 12.   DRN2G ALSO ALLOWS
C  R AND DR TO BE SUPPLIED ROW-WISE -- JUST SET ND = 1 AND CALL
C   DRN2G ONCE FOR EACH ROW WHEN PROVIDING RESIDUALS AND JACOBIANS.
C     ANOTHER NEW FEATURE IS THAT CALLING  DRN2G WITH IV(1) = 13
C  CAUSES STORAGE ALLOCATION ONLY TO BE PERFORMED -- ON RETURN, SUCH
C  COMPONENTS AS IV(G) (THE FIRST SUBSCRIPT IN G OF THE GRADIENT)
C  AND IV(S) (THE FIRST SUBSCRIPT IN V OF THE S LOWER TRIANGLE OF
C  THE S MATRIX) WILL HAVE BEEN SET (UNLESS LIV OR LV IS TOO SMALL),
C  AND IV(1) WILL HAVE BEEN SET TO 14. CALLING  DRN2G WITH IV(1) = 14
C  CAUSES EXECUTION OF THE ALGORITHM TO BEGIN UNDER THE ASSUMPTION
C  THAT STORAGE HAS BEEN ALLOCATED.
C
C ***  SUPPLYING R AND DR  ***
C
C      DRN2G USES IV AND V IN THE SAME WAY AS NL2SOL, WITH A SMALL
C  NUMBER OF OBVIOUS CHANGES.  ONE DIFFERENCE BETWEEN  DRN2G AND
C  NL2ITR IS THAT INITIAL FUNCTION AND GRADIENT INFORMATION NEED NOT
C  BE SUPPLIED IN THE VERY FIRST CALL ON  DRN2G, THE ONE WITH
C  IV(1) = 0 OR 12.  ANOTHER DIFFERENCE IS THAT  DRN2G RETURNS WITH
C  IV(1) = -2 WHEN IT WANTS ANOTHER LOOK AT THE OLD JACOBIAN MATRIX
C  AND THE CURRENT RESIDUAL -- THE ONE CORRESPONDING TO X AND
C  IV(NFGCAL).  IT THEN RETURNS WITH IV(1) = -3 WHEN IT WANTS TO SEE
C  BOTH THE NEW RESIDUAL AND THE NEW JACOBIAN MATRIX AT ONCE.  NOTE
C  THAT IV(NFGCAL) = IV(7) CONTAINS THE VALUE THAT IV(NFCALL) = IV(6)
C  HAD WHEN THE CURRENT RESIDUAL WAS EVALUATED.  ALSO NOTE THAT THE
C  VALUE OF X CORRESPONDING TO THE OLD JACOBIAN MATRIX IS STORED IN
C  V, STARTING AT V(IV(X0)) = V(IV(43)).
C     ANOTHER NEW RETURN...  DRN2G IV(1) = -1 WHEN IT WANTS BOTH THE
C  RESIDUAL AND THE JACOBIAN TO BE EVALUATED AT X.
C     A NEW RESIDUAL VECTOR MUST BE SUPPLIED WHEN  DRN2G RETURNS WITH
C  IV(1) = 1 OR -1.  THIS TAKES THE FORM OF VALUES OF R(I,X) PASSED
C  IN R(I-N1+1), I = N1(1)N2.  YOU MAY PASS ALL THESE VALUES AT ONCE
C  (I.E., N1 = 1 AND N2 = N) OR IN PIECES BY MAKING SEVERAL CALLS ON
C   DRN2G.  EACH TIME  DRN2G RETURNS WITH IV(1) = 1, N1 WILL HAVE
C  BEEN SET TO THE INDEX OF THE NEXT RESIDUAL THAT  DRN2G EXPECTS TO
C  SEE, AND N2 WILL BE SET TO THE INDEX OF THE HIGHEST RESIDUAL THAT
C  COULD BE GIVEN ON THE NEXT CALL, I.E., N2 = N1 + ND - 1.  (THUS
C  WHEN  DRN2G FIRST RETURNS WITH IV(1) = 1 FOR A NEW X, IT WILL
C  HAVE SET N1 TO 1 AND N2 TO MIN(ND,N).)  THE CALLER MAY PROVIDE
C  FEWER THAN N2-N1+1 RESIDUALS ON THE NEXT CALL BY SETTING N2 TO
C  A SMALLER VALUE.   DRN2G ASSUMES IT HAS SEEN ALL THE RESIDUALS
C  FOR THE CURRENT X WHEN IT IS CALLED WITH N2 .GE. N.
C    EXAMPLE... SUPPOSE N = 80 AND THAT R IS TO BE PASSED IN 8
C  BLOCKS OF SIZE 10.  THE FOLLOWING CODE WOULD DO THE JOB.
C
C      N = 80
C      ND = 10
C      ...
C      DO 10 K = 1, 8
C           ***  COMPUTE R(I,X) FOR I = 10*K-9 TO 10*K  ***
C           ***  AND STORE THEM IN R(1),...,R(10)  ***
C           CALL  DRN2G(..., R, ...)
C   10      CONTINUE
C
C     THE SITUATION IS SIMILAR WHEN GRADIENT INFORMATION IS
C  REQUIRED, I.E., WHEN  DRN2G RETURNS WITH IV(1) = 2, -1, OR -2.
C  NOTE THAT  DRN2G OVERWRITES R, BUT THAT IN THE SPECIAL CASE OF
C  N1 = 1 AND N2 = N ON PREVIOUS CALLS,  DRN2G NEVER RETURNS WITH
C  IV(1) = -2.  IT SHOULD BE CLEAR THAT THE PARTIAL DERIVATIVE OF
C  R(I,X) WITH RESPECT TO X(L) IS TO BE STORED IN DR(I-N1+1,L),
C  L = 1(1)P, I = N1(1)N2.  IT IS ESSENTIAL THAT R(I) AND DR(I,L)
C  ALL CORRESPOND TO THE SAME RESIDUALS WHEN IV(1) = -1 OR -2.
C
C  ***  COVARIANCE MATRIX  ***
C
C     IV(RDREQ) = IV(57) TELLS WHETHER TO COMPUTE A COVARIANCE
C  MATRIX AND/OR REGRESSION DIAGNOSTICS... 0 MEANS NEITHER,
C  1 MEANS COVARIANCE MATRIX ONLY, 2 MEANS REG. DIAGNOSTICS ONLY,
C  3 MEANS BOTH.  AS WITH NL2SOL, IV(COVREQ) = IV(15) TELLS WHAT
C  HESSIAN APPROXIMATION TO USE IN THIS COMPUTING.
C
C  ***  REGRESSION DIAGNOSTICS  ***
C
C     SEE THE COMMENTS IN SUBROUTINE   DN2G.
C
C  ***  GENERAL  ***
C
C     CODED BY DAVID M. GAY.
C
C+++++++++++++++++++++++++++++  DECLARATIONS  ++++++++++++++++++++++++++
C
C  ***  INTRINSIC FUNCTIONS  ***
C/+
      INTEGER IABS, MOD
C/
C  ***  EXTERNAL FUNCTIONS AND SUBROUTINES  ***
C
      DOUBLE PRECISION DD7TPR, DV2NRM
      EXTERNAL DC7VFN,DIVSET, DD7TPR,DD7UPD,DG7LIT,DITSUM,DL7VML,
     1         DN2CVP, DN2LRD, DQ7APL,DQ7RAD,DV7CPY, DV7SCP, DV2NRM
C
C DC7VFN... FINISHES COVARIANCE COMPUTATION.
C DIVSET.... PROVIDES DEFAULT IV AND V INPUT COMPONENTS.
C DD7TPR... COMPUTES INNER PRODUCT OF TWO VECTORS.
C DD7UPD...  UPDATES SCALE VECTOR D.
C DG7LIT.... PERFORMS BASIC MINIMIZATION ALGORITHM.
C DITSUM.... PRINTS ITERATION SUMMARY, INFO ABOUT INITIAL AND FINAL X.
C DL7VML.... COMPUTES L * V, V = VECTOR, L = LOWER TRIANGULAR MATRIX.
C DN2CVP... PRINTS COVARIANCE MATRIX.
C DN2LRD... COMPUTES REGRESSION DIAGNOSTICS.
C DQ7APL... APPLIES QR TRANSFORMATIONS STORED BY DQ7RAD.
C DQ7RAD.... ADDS A NEW BLOCK OF ROWS TO QR DECOMPOSITION.
C DV7CPY.... COPIES ONE VECTOR TO ANOTHER.
C DV7SCP... SETS ALL ELEMENTS OF A VECTOR TO A SCALAR.
C
C  ***  LOCAL VARIABLES  ***
C
      INTEGER G1, GI, I, IV1, IVMODE, JTOL1, K, L, LH, NN, QTR1,
     1        RMAT1, YI, Y1
      DOUBLE PRECISION T
C
      DOUBLE PRECISION HALF, ZERO
C
C  ***  SUBSCRIPTS FOR IV AND V  ***
C
      INTEGER CNVCOD, COVMAT, COVREQ, DINIT, DTYPE, DTINIT, D0INIT, F,
     1        FDH, G, H, IPIVOT, IVNEED, JCN, JTOL, LMAT, MODE,
     2        NEXTIV, NEXTV, NF0, NF00, NF1, NFCALL, NFCOV, NFGCAL,
     3        NGCALL, NGCOV, QTR, RDREQ, REGD, RESTOR, RLIMIT, RMAT,
     4        TOOBIG, VNEED, Y
C
C  ***  IV SUBSCRIPT VALUES  ***
C
      PARAMETER (CNVCOD=55, COVMAT=26, COVREQ=15, DTYPE=16, FDH=74,
     1           G=28, H=56, IPIVOT=76, IVNEED=3, JCN=66, JTOL=59,
     2           LMAT=42, MODE=35, NEXTIV=46, NEXTV=47, NFCALL=6,
     3           NFCOV=52, NF0=68, NF00=81, NF1=69, NFGCAL=7, NGCALL=30,
     4           NGCOV=53, QTR=77, RESTOR=9, RMAT=78, RDREQ=57, REGD=67,
     5           TOOBIG=2, VNEED=4, Y=48)
C
C  ***  V SUBSCRIPT VALUES  ***
C
      PARAMETER (DINIT=38, DTINIT=39, D0INIT=40, F=10, RLIMIT=46)
      PARAMETER (HALF=0.5D+0, ZERO=0.D+0)
C
C+++++++++++++++++++++++++++++++  BODY  ++++++++++++++++++++++++++++++++
C
      LH = P * (P+1) / 2
      IF (IV(1) .EQ. 0) CALL DIVSET(1, IV, LIV, LV, V)
      IV1 = IV(1)
      IF (IV1 .GT. 2) GO TO 10
       NN = N2 - N1 + 1
       IV(RESTOR) = 0
       I = IV1 + 4
       IF (IV(TOOBIG) .EQ. 0) GO TO (150, 130, 150, 120, 120, 150), I
       IF (I .NE. 5) IV(1) = 2
       GO TO 40
C
C  ***  FRESH START OR RESTART -- CHECK INPUT INTEGERS  ***
C
 10   IF (ND .LE. 0) GO TO 210
      IF (P .LE. 0) GO TO 210
      IF (N .LE. 0) GO TO 210
      IF (IV1 .EQ. 14) GO TO 30
      IF (IV1 .GT. 16) GO TO 300
      IF (IV1 .LT. 12) GO TO 40
      IF (IV1 .EQ. 12) IV(1) = 13
      IF (IV(1) .NE. 13) GO TO 20
      IV(IVNEED) = IV(IVNEED) + P
      IV(VNEED) = IV(VNEED) + P*(P+13)/2
 20   CALL DG7LIT(D, X, IV, LIV, LV, P, P, V, X, X)
      IF (IV(1) .NE. 14) GO TO 999
C
C  ***  STORAGE ALLOCATION  ***
C
      IV(IPIVOT) = IV(NEXTIV)
      IV(NEXTIV) = IV(IPIVOT) + P
      IV(Y) = IV(NEXTV)
      IV(G) = IV(Y) + P
      IV(JCN) = IV(G) + P
      IV(RMAT) = IV(JCN) + P
      IV(QTR) = IV(RMAT) + LH
      IV(JTOL) = IV(QTR) + P
      IV(NEXTV) = IV(JTOL) + 2*P
      IF (IV1 .EQ. 13) GO TO 999
C
 30   JTOL1 = IV(JTOL)
      IF (V(DINIT) .GE. ZERO) CALL DV7SCP(P, D, V(DINIT))
      IF (V(DTINIT) .GT. ZERO) CALL DV7SCP(P, V(JTOL1), V(DTINIT))
      I = JTOL1 + P
      IF (V(D0INIT) .GT. ZERO) CALL DV7SCP(P, V(I), V(D0INIT))
      IV(NF0) = 0
      IV(NF1) = 0
      IF (ND .GE. N) GO TO 40
C
C  ***  SPECIAL CASE HANDLING OF FIRST FUNCTION AND GRADIENT EVALUATION
C  ***  -- ASK FOR BOTH RESIDUAL AND JACOBIAN AT ONCE
C
      G1 = IV(G)
      Y1 = IV(Y)
      CALL DG7LIT(D, V(G1), IV, LIV, LV, P, P, V, X, V(Y1))
      IF (IV(1) .NE. 1) GO TO 220
      V(F) = ZERO
      CALL DV7SCP(P, V(G1), ZERO)
      IV(1) = -1
      QTR1 = IV(QTR)
      CALL DV7SCP(P, V(QTR1), ZERO)
      IV(REGD) = 0
      RMAT1 = IV(RMAT)
      GO TO 100
C
 40   G1 = IV(G)
      Y1 = IV(Y)
      CALL DG7LIT(D, V(G1), IV, LIV, LV, P, P, V, X, V(Y1))
      IF (IV(1) .EQ. 2) GO TO 60
      IF (IV(1) .GT. 2) GO TO 220
C
      V(F) = ZERO
      IF (IV(NF1) .EQ. 0) GO TO 260
      IF (IV(RESTOR) .NE. 2) GO TO 260
      IV(NF0) = IV(NF1)
      CALL DV7CPY(N, RD, R)
      IV(REGD) = 0
      GO TO 260
C
 60   CALL DV7SCP(P, V(G1), ZERO)
      IF (IV(MODE) .GT. 0) GO TO 230
      RMAT1 = IV(RMAT)
      QTR1 = IV(QTR)
      CALL DV7SCP(P, V(QTR1), ZERO)
      IV(REGD) = 0
      IF (ND .LT. N) GO TO 90
      IF (N1 .NE. 1) GO TO 90
      IF (IV(MODE) .LT. 0) GO TO 100
      IF (IV(NF1) .EQ. IV(NFGCAL)) GO TO 70
       IF (IV(NF0) .NE. IV(NFGCAL)) GO TO 90
          CALL DV7CPY(N, R, RD)
          GO TO 80
 70   CALL DV7CPY(N, RD, R)
 80   CALL DQ7APL(ND, N, P, DR, RD, 0)
      CALL DL7VML(P, V(Y1), V(RMAT1), RD)
      GO TO 110
C
 90   IV(1) = -2
      IF (IV(MODE) .LT. 0) IV(1) = -1
 100  CALL DV7SCP(P, V(Y1), ZERO)
 110  CALL DV7SCP(LH, V(RMAT1), ZERO)
      GO TO 260
C
C  ***  COMPUTE F(X)  ***
C
 120  T = DV2NRM(NN, R)
      IF (T .GT. V(RLIMIT)) GO TO 200
      V(F) = V(F)  +  HALF * T**2
      IF (N2 .LT. N) GO TO 270
      IF (N1 .EQ. 1) IV(NF1) = IV(NFCALL)
      GO TO 40
C
C  ***  COMPUTE Y  ***
C
 130  Y1 = IV(Y)
      YI = Y1
      DO 140 L = 1, P
       V(YI) = V(YI) + DD7TPR(NN, DR(1,L), R)
       YI = YI + 1
 140     CONTINUE
      IF (N2 .LT. N) GO TO 270
       IV(1) = 2
       IF (N1 .GT. 1) IV(1) = -3
       GO TO 260
C
C  ***  COMPUTE GRADIENT INFORMATION  ***
C
 150  IF (IV(MODE) .GT. P) GO TO 240
      G1 = IV(G)
      IVMODE = IV(MODE)
      IF (IVMODE .LT. 0) GO TO 170
      IF (IVMODE .EQ. 0) GO TO 180
      IV(1) = 2
C
C  ***  COMPUTE GRADIENT ONLY (FOR USE IN COVARIANCE COMPUTATION)  ***
C
      GI = G1
      DO 160 L = 1, P
       V(GI) = V(GI) + DD7TPR(NN, R, DR(1,L))
       GI = GI + 1
 160     CONTINUE
      GO TO 190
C
C  *** COMPUTE INITIAL FUNCTION VALUE WHEN ND .LT. N ***
C
 170  IF (N .LE. ND) GO TO 180
       T = DV2NRM(NN, R)
       IF (T .GT. V(RLIMIT)) GO TO 200
       V(F) = V(F)  +  HALF * T**2
C
C  ***  UPDATE D IF DESIRED  ***
C
 180  IF (IV(DTYPE) .GT. 0)
     1      CALL DD7UPD(D, DR, IV, LIV, LV, N, ND, NN, N2, P, V)
C
C  ***  COMPUTE RMAT AND QTR  ***
C
      QTR1 = IV(QTR)
      RMAT1 = IV(RMAT)
      CALL DQ7RAD(NN, ND, P, V(QTR1), .TRUE., V(RMAT1), DR, R)
      IV(NF1) = 0
C
 190  IF (N2 .LT. N) GO TO 270
      IF (IVMODE .GT. 0) GO TO 40
      IV(NF00) = IV(NFGCAL)
C
C  ***  COMPUTE G FROM RMAT AND QTR  ***
C
      CALL DL7VML(P, V(G1), V(RMAT1), V(QTR1))
      IV(1) = 2
      IF (IVMODE .EQ. 0) GO TO 40
      IF (N .LE. ND) GO TO 40
C
C  ***  FINISH SPECIAL CASE HANDLING OF FIRST FUNCTION AND GRADIENT
C
      Y1 = IV(Y)
      IV(1) = 1
      CALL DG7LIT(D, V(G1), IV, LIV, LV, P, P, V, X, V(Y1))
      IF (IV(1) .NE. 2) GO TO 220
      GO TO 40
C
C  ***  MISC. DETAILS  ***
C
C     ***  X IS OUT OF RANGE (OVERSIZE STEP)  ***
C
 200  IV(TOOBIG) = 1
      GO TO 40
C
C     ***  BAD N, ND, OR P  ***
C
 210  IV(1) = 66
      GO TO 300
C
C  ***  CONVERGENCE OBTAINED -- SEE WHETHER TO COMPUTE COVARIANCE  ***
C
 220  IF (IV(COVMAT) .NE. 0) GO TO 290
      IF (IV(REGD) .NE. 0) GO TO 290
C
C     ***  SEE IF CHOLESKY FACTOR OF HESSIAN IS AVAILABLE  ***
C
      K = IV(FDH)
      IF (K .LE. 0) GO TO 280
      IF (IV(RDREQ) .LE. 0) GO TO 290
C
C     ***  COMPUTE REGRESSION DIAGNOSTICS AND DEFAULT COVARIANCE IF
C          DESIRED  ***
C
      I = 0
      IF (MOD(IV(RDREQ),4) .GE. 2) I = 1
      IF (MOD(IV(RDREQ),2) .EQ. 1 .AND. IABS(IV(COVREQ)) .LE. 1) I = I+2
      IF (I .EQ. 0) GO TO 250
      IV(MODE) = P + I
      IV(NGCALL) = IV(NGCALL) + 1
      IV(NGCOV) = IV(NGCOV) + 1
      IV(CNVCOD) = IV(1)
      IF (I .LT. 2) GO TO 230
       L = IABS(IV(H))
       CALL DV7SCP(LH, V(L), ZERO)
 230  IV(NFCOV) = IV(NFCOV) + 1
      IV(NFCALL) = IV(NFCALL) + 1
      IV(NFGCAL) = IV(NFCALL)
      IV(1) = -1
      GO TO 260
C
 240  L = IV(LMAT)
      CALL DN2LRD(DR, IV, V(L), LH, LIV, LV, ND, NN, P, R, RD, V)
      IF (N2 .LT. N) GO TO 270
      IF (N1 .GT. 1) GO TO 250
C
C     ***  ENSURE WE CAN RESTART -- AND MAKE RETURN STATE OF DR
C     ***  INDEPENDENT OF WHETHER REGRESSION DIAGNOSTICS ARE COMPUTED.
C     ***  USE STEP VECTOR (ALLOCATED BY DG7LIT) FOR SCRATCH.
C
      RMAT1 = IV(RMAT)
      CALL DV7SCP(LH, V(RMAT1), ZERO)
      CALL DQ7RAD(NN, ND, P, R, .FALSE., V(RMAT1), DR, R)
      IV(NF1) = 0
C
C  ***  FINISH COMPUTING COVARIANCE  ***
C
 250  L = IV(LMAT)
      CALL DC7VFN(IV, V(L), LH, LIV, LV, N, P, V)
      GO TO 290
C
C  ***  RETURN FOR MORE FUNCTION OR GRADIENT INFORMATION  ***
C
 260  N2 = 0
 270  N1 = N2 + 1
      N2 = N2 + ND
      IF (N2 .GT. N) N2 = N
      GO TO 999
C
C  ***  COME HERE FOR INDEFINITE FINITE-DIFFERENCE HESSIAN  ***
C
 280  IV(COVMAT) = K
      IV(REGD) = K
C
C  ***  PRINT SUMMARY OF FINAL ITERATION AND OTHER REQUESTED ITEMS  ***
C
 290  G1 = IV(G)
 300  CALL DITSUM(D, V(G1), IV, LIV, LV, P, V, X)
      IF (IV(1) .LE. 6 .AND. IV(RDREQ) .GT. 0)
     1     CALL DN2CVP(IV, LIV, LV, P, V)
C
 999  RETURN
C  ***  LAST LINE OF  DRN2G FOLLOWS  ***
      END
      SUBROUTINE DL7SQR(N, A, L)
C
C  ***  COMPUTE  A = LOWER TRIANGLE OF  L*(L**T),  WITH BOTH
C  ***  L  AND  A  STORED COMPACTLY BY ROWS.  (BOTH MAY OCCUPY THE
C  ***  SAME STORAGE.
C
C  ***  PARAMETERS  ***
C
      INTEGER N
      DOUBLE PRECISION A(1), L(1)
C     DIMENSION A(N*(N+1)/2), L(N*(N+1)/2)
C
C  ***  LOCAL VARIABLES  ***
C
      INTEGER I, II, IJ, IK, IP1, I0, J, JJ, JK, J0, K, NP1
      DOUBLE PRECISION T
C
      NP1 = N + 1
      I0 = N*(N+1)/2
      DO 30 II = 1, N
       I = NP1 - II
       IP1 = I + 1
       I0 = I0 - I
       J0 = I*(I+1)/2
       DO 20 JJ = 1, I
            J = IP1 - JJ
            J0 = J0 - J
            T = 0.0D0
            DO 10 K = 1, J
               IK = I0 + K
               JK = J0 + K
               T = T + L(IK)*L(JK)
 10                CONTINUE
            IJ = I0 + J
            A(IJ) = T
 20           CONTINUE
 30      CONTINUE
      RETURN
      END
      SUBROUTINE DRMNHB(B, D, FX, G, H, IV, LH, LIV, LV, N, V, X)
C
C  ***  CARRY OUT  DMNHB (SIMPLY BOUNDED MINIMIZATION) ITERATIONS,
C  ***  USING HESSIAN MATRIX PROVIDED BY THE CALLER.
C
C  ***  PARAMETER DECLARATIONS  ***
C
      INTEGER LH, LIV, LV, N
      INTEGER IV(LIV)
      DOUBLE PRECISION B(2,N), D(N), FX, G(N), H(LH), V(LV), X(N)
C
C--------------------------  PARAMETER USAGE  --------------------------
C
C D.... SCALE VECTOR.
C FX... FUNCTION VALUE.
C G.... GRADIENT VECTOR.
C H.... LOWER TRIANGLE OF THE HESSIAN, STORED ROWWISE.
C IV... INTEGER VALUE ARRAY.
C LH... LENGTH OF H = P*(P+1)/2.
C LIV.. LENGTH OF IV (AT LEAST 59 + 3*N).
C LV... LENGTH OF V (AT LEAST 78 + N*(N+27)/2).
C N.... NUMBER OF VARIABLES (COMPONENTS IN X AND G).
C V.... FLOATING-POINT VALUE ARRAY.
C X.... PARAMETER VECTOR.
C
C  ***  DISCUSSION  ***
C
C        PARAMETERS IV, N, V, AND X ARE THE SAME AS THE CORRESPONDING
C     ONES TO  DMNHB (WHICH SEE), EXCEPT THAT V CAN BE SHORTER (SINCE
C     THE PART OF V THAT  DMNHB USES FOR STORING G AND H IS NOT NEEDED).
C     MOREOVER, COMPARED WITH  DMNHB, IV(1) MAY HAVE THE TWO ADDITIONAL
C     OUTPUT VALUES 1 AND 2, WHICH ARE EXPLAINED BELOW, AS IS THE USE
C     OF IV(TOOBIG) AND IV(NFGCAL).  THE VALUE IV(G), WHICH IS AN
C     OUTPUT VALUE FROM  DMNHB, IS NOT REFERENCED BY DRMNHB OR THE
C     SUBROUTINES IT CALLS.
C
C IV(1) = 1 MEANS THE CALLER SHOULD SET FX TO F(X), THE FUNCTION VALUE
C             AT X, AND CALL DRMNHB AGAIN, HAVING CHANGED NONE OF THE
C             OTHER PARAMETERS.  AN EXCEPTION OCCURS IF F(X) CANNOT BE
C             COMPUTED (E.G. IF OVERFLOW WOULD OCCUR), WHICH MAY HAPPEN
C             BECAUSE OF AN OVERSIZED STEP.  IN THIS CASE THE CALLER
C             SHOULD SET IV(TOOBIG) = IV(2) TO 1, WHICH WILL CAUSE
C             DRMNHB TO IGNORE FX AND TRY A SMALLER STEP.  THE PARA-
C             METER NF THAT  DMNH PASSES TO CALCF (FOR POSSIBLE USE BY
C             CALCGH) IS A COPY OF IV(NFCALL) = IV(6).
C IV(1) = 2 MEANS THE CALLER SHOULD SET G TO G(X), THE GRADIENT OF F AT
C             X, AND H TO THE LOWER TRIANGLE OF H(X), THE HESSIAN OF F
C             AT X, AND CALL DRMNHB AGAIN, HAVING CHANGED NONE OF THE
C             OTHER PARAMETERS EXCEPT PERHAPS THE SCALE VECTOR D.
C                  THE PARAMETER NF THAT  DMNHB PASSES TO CALCG IS
C             IV(NFGCAL) = IV(7).  IF G(X) AND H(X) CANNOT BE EVALUATED,
C             THEN THE CALLER MAY SET IV(NFGCAL) TO 0, IN WHICH CASE
C             DRMNHB WILL RETURN WITH IV(1) = 65.
C                  NOTE -- DRMNHB OVERWRITES H WITH THE LOWER TRIANGLE
C             OF  DIAG(D)**-1 * H(X) * DIAG(D)**-1.
C.
C  ***  GENERAL  ***
C
C     CODED BY DAVID M. GAY (WINTER, SPRING 1983).
C
C        (SEE  DMNG AND  DMNH FOR REFERENCES.)
C
C+++++++++++++++++++++++++++  DECLARATIONS  ++++++++++++++++++++++++++++
C
C  ***  LOCAL VARIABLES  ***
C
      INTEGER DG1, DUMMY, I, IPI, IPIV2, IPN, J, K, L, LSTGST, NN1O2,
     1        RSTRST, STEP0, STEP1, TD1, TEMP0, TEMP1, TG1, W1, X01, X11
      DOUBLE PRECISION GI, T, XI
C
C     ***  CONSTANTS  ***
C
      DOUBLE PRECISION NEGONE, ONE, ONEP2, ZERO
C
C  ***  NO INTRINSIC FUNCTIONS  ***
C
C  ***  EXTERNAL FUNCTIONS AND SUBROUTINES  ***
C
      LOGICAL STOPX
      DOUBLE PRECISION DD7TPR, DRLDST, DV2NRM
      EXTERNAL DA7SST,DIVSET, DD7TPR,DD7DUP, DG7QSB, I7PNVR,DITSUM,
     1        DPARCK, DRLDST, DS7IPR, DS7LVM, STOPX, DV2NRM,DV2AXY,
     2        DV7CPY, DV7IPR, DV7SCP, DV7VMP
C
C DA7SST.... ASSESSES CANDIDATE STEP.
C DIVSET.... PROVIDES DEFAULT IV AND V INPUT VALUES.
C DD7TPR... RETURNS INNER PRODUCT OF TWO VECTORS.
C DD7DUP.... UPDATES SCALE VECTOR D.
C DG7QSB... COMPUTES APPROXIMATE OPTIMAL BOUNDED STEP.
C I7PNVR... INVERTS PERMUTATION ARRAY.
C DITSUM.... PRINTS ITERATION SUMMARY AND INFO ON INITIAL AND FINAL X.
C DPARCK.... CHECKS VALIDITY OF INPUT IV AND V VALUES.
C DRLDST... COMPUTES V(RELDX) = RELATIVE STEP SIZE.
C DS7IPR... APPLIES PERMUTATION TO LOWER TRIANG. OF SYM. MATRIX.
C DS7LVM... MULTIPLIES SYMMETRIC MATRIX TIMES VECTOR, GIVEN THE LOWER
C             TRIANGLE OF THE MATRIX.
C STOPX.... RETURNS .TRUE. IF THE BREAK KEY HAS BEEN PRESSED.
C DV2NRM... RETURNS THE 2-NORM OF A VECTOR.
C DV2AXY.... COMPUTES SCALAR TIMES ONE VECTOR PLUS ANOTHER.
C DV7CPY.... COPIES ONE VECTOR TO ANOTHER.
C DV7IPR... APPLIES PERMUTATION TO VECTOR.
C DV7SCP... SETS ALL ELEMENTS OF A VECTOR TO A SCALAR.
C DV7VMP... MULTIPLIES (OR DIVIDES) TWO VECTORS COMPONENTWISE.
C
C  ***  SUBSCRIPTS FOR IV AND V  ***
C
      INTEGER CNVCOD, DG, DGNORM, DINIT, DSTNRM, DTINIT, DTOL, DTYPE,
     1        D0INIT, F, F0, FDIF, GTSTEP, INCFAC, IVNEED, IRC, KAGQT,
     2        LMAT, LMAX0, LMAXS, MODE, MODEL, MXFCAL, MXITER, N0, NC,
     3        NEXTIV, NEXTV, NFCALL, NFGCAL, NGCALL, NITER, PERM,
     4        PHMXFC, PREDUC, RADFAC, RADINC, RADIUS, RAD0, RELDX,
     5        RESTOR, STEP, STGLIM, STPPAR, TOOBIG, TUNER4, TUNER5,
     6        VNEED, W, XIRC, X0
C
C  ***  IV SUBSCRIPT VALUES  ***
C
C  ***  (NOTE THAT NC AND N0 ARE STORED IN IV(G0) AND IV(STLSTG) RESP.)
C
      PARAMETER (CNVCOD=55, DG=37, DTOL=59, DTYPE=16, IRC=29, IVNEED=3,
     1           KAGQT=33, LMAT=42, MODE=35, MODEL=5, MXFCAL=17,
     2           MXITER=18, N0=41, NC=48, NEXTIV=46, NEXTV=47, NFCALL=6,
     3           NFGCAL=7, NGCALL=30, NITER=31, PERM=58, RADINC=8,
     4           RESTOR=9, STEP=40, STGLIM=11, TOOBIG=2, VNEED=4, W=34,
     5           XIRC=13, X0=43)
C
C  ***  V SUBSCRIPT VALUES  ***
C
      PARAMETER (DGNORM=1, DINIT=38, DSTNRM=2, DTINIT=39, D0INIT=40,
     1           F=10, F0=13, FDIF=11, GTSTEP=4, INCFAC=23, LMAX0=35,
     2           LMAXS=36, PHMXFC=21, PREDUC=7, RADFAC=16, RADIUS=8,
     3           RAD0=9, RELDX=17, STPPAR=5, TUNER4=29, TUNER5=30)
C
      PARAMETER (NEGONE=-1.D+0, ONE=1.D+0, ONEP2=1.2D+0, ZERO=0.D+0)
C
C+++++++++++++++++++++++++++++++  BODY  ++++++++++++++++++++++++++++++++
C
      I = IV(1)
      IF (I .EQ. 1) GO TO 50
      IF (I .EQ. 2) GO TO 60
C
C  ***  CHECK VALIDITY OF IV AND V INPUT VALUES  ***
C
      IF (IV(1) .EQ. 0) CALL DIVSET(2, IV, LIV, LV, V)
      IF (IV(1) .LT. 12) GO TO 10
      IF (IV(1) .GT. 13) GO TO 10
       IV(VNEED) = IV(VNEED) + N*(N+27)/2 + 7
       IV(IVNEED) = IV(IVNEED) + 3*N
 10   CALL DPARCK(2, D, IV, LIV, LV, N, V)
      I = IV(1) - 2
      IF (I .GT. 12) GO TO 999
      NN1O2 = N * (N + 1) / 2
      IF (LH .GE. NN1O2) GO TO (250,250,250,250,250,250,190,150,190,
     1                          20,20,30), I
       IV(1) = 81
       GO TO 440
C
C  ***  STORAGE ALLOCATION  ***
C
 20   IV(DTOL) = IV(LMAT) + NN1O2
      IV(X0) = IV(DTOL) + 2*N
      IV(STEP) = IV(X0) + 2*N
      IV(DG) = IV(STEP) + 3*N
      IV(W) = IV(DG) + 2*N
      IV(NEXTV) = IV(W) + 4*N + 7
      IV(NEXTIV) = IV(PERM) + 3*N
      IF (IV(1) .NE. 13) GO TO 30
       IV(1) = 14
       GO TO 999
C
C  ***  INITIALIZATION  ***
C
 30   IV(NITER) = 0
      IV(NFCALL) = 1
      IV(NGCALL) = 1
      IV(NFGCAL) = 1
      IV(MODE) = -1
      IV(MODEL) = 1
      IV(STGLIM) = 1
      IV(TOOBIG) = 0
      IV(CNVCOD) = 0
      IV(RADINC) = 0
      IV(NC) = N
      V(RAD0) = ZERO
      V(STPPAR) = ZERO
      IF (V(DINIT) .GE. ZERO) CALL DV7SCP(N, D, V(DINIT))
      K = IV(DTOL)
      IF (V(DTINIT) .GT. ZERO) CALL DV7SCP(N, V(K), V(DTINIT))
      K = K + N
      IF (V(D0INIT) .GT. ZERO) CALL DV7SCP(N, V(K), V(D0INIT))
C
C  ***  CHECK CONSISTENCY OF B AND INITIALIZE IP ARRAY  ***
C
      IPI = IV(PERM)
      DO 40 I = 1, N
       IV(IPI) = I
       IPI = IPI + 1
       IF (B(1,I) .GT. B(2,I)) GO TO 420
 40      CONTINUE
C
C  ***  GET INITIAL FUNCTION VALUE  ***
C
      IV(1) = 1
      GO TO 450
C
 50   V(F) = FX
      IF (IV(MODE) .GE. 0) GO TO 250
      V(F0) = FX
      IV(1) = 2
      IF (IV(TOOBIG) .EQ. 0) GO TO 999
       IV(1) = 63
       GO TO 440
C
C  ***  MAKE SURE GRADIENT COULD BE COMPUTED  ***
C
 60   IF (IV(TOOBIG) .EQ. 0) GO TO 70
       IV(1) = 65
       GO TO 440
C
C  ***  UPDATE THE SCALE VECTOR D  ***
C
 70   DG1 = IV(DG)
      IF (IV(DTYPE) .LE. 0) GO TO 90
      K = DG1
      J = 0
      DO 80 I = 1, N
       J = J + I
       V(K) = H(J)
       K = K + 1
 80      CONTINUE
      CALL DD7DUP(D, V(DG1), IV, LIV, LV, N, V)
C
C  ***  COMPUTE SCALED GRADIENT AND ITS NORM  ***
C
 90   DG1 = IV(DG)
      CALL DV7VMP(N, V(DG1), G, D, -1)
C
C  ***  COMPUTE SCALED HESSIAN  ***
C
      K = 1
      DO 110 I = 1, N
       T = ONE / D(I)
       DO 100 J = 1, I
            H(K) = T * H(K) / D(J)
            K = K + 1
 100          CONTINUE
 110     CONTINUE
C
C  ***  CHOOSE INITIAL PERMUTATION  ***
C
      IPI = IV(PERM)
      IPN = IPI + N
      IPIV2 = IPN - 1
C     *** INVERT OLD PERMUTATION ARRAY ***
      CALL I7PNVR(N, IV(IPN), IV(IPI))
      K = IV(NC)
      DO 130 I = 1, N
       IF (B(1,I) .GE. B(2,I)) GO TO 120
       XI = X(I)
       GI = G(I)
       IF (XI .LE. B(1,I) .AND. GI .GT. ZERO) GO TO 120
       IF (XI .GE. B(2,I) .AND. GI .LT. ZERO) GO TO 120
          IV(IPI) = I
          IPI = IPI + 1
          J = IPIV2 + I
C           *** DISALLOW CONVERGENCE IF X(I) HAS JUST BEEN FREED ***
          IF (IV(J) .GT. K) IV(CNVCOD) = 0
          GO TO 130
 120     IPN = IPN - 1
       IV(IPN) = I
 130     CONTINUE
      IV(NC) = IPN - IV(PERM)
C
C  ***  PERMUTE SCALED GRADIENT AND HESSIAN ACCORDINGLY  ***
C
      IPI = IV(PERM)
      CALL DS7IPR(N, IV(IPI), H)
      CALL DV7IPR(N, IV(IPI), V(DG1))
      V(DGNORM) = ZERO
      IF (IV(NC) .GT. 0) V(DGNORM) = DV2NRM(IV(NC), V(DG1))
C
      IF (IV(CNVCOD) .NE. 0) GO TO 430
      IF (IV(MODE) .EQ. 0) GO TO 380
C
C  ***  ALLOW FIRST STEP TO HAVE SCALED 2-NORM AT MOST V(LMAX0)  ***
C
      V(RADIUS) = V(LMAX0) / (ONE + V(PHMXFC))
C
      IV(MODE) = 0
C
C
C-----------------------------  MAIN LOOP  -----------------------------
C
C
C  ***  PRINT ITERATION SUMMARY, CHECK ITERATION LIMIT  ***
C
 140  CALL DITSUM(D, G, IV, LIV, LV, N, V, X)
 150  K = IV(NITER)
      IF (K .LT. IV(MXITER)) GO TO 160
       IV(1) = 10
       GO TO 440
C
 160  IV(NITER) = K + 1
C
C  ***  INITIALIZE FOR START OF NEXT ITERATION  ***
C
      X01 = IV(X0)
      V(F0) = V(F)
      IV(IRC) = 4
      IV(KAGQT) = -1
C
C     ***  COPY X TO X0  ***
C
      CALL DV7CPY(N, V(X01), X)
C
C  ***  UPDATE RADIUS  ***
C
      IF (K .EQ. 0) GO TO 180
      STEP1 = IV(STEP)
      K = STEP1
      DO 170 I = 1, N
       V(K) = D(I) * V(K)
       K = K + 1
 170     CONTINUE
      T = V(RADFAC) * DV2NRM(N, V(STEP1))
      IF (V(RADFAC) .LT. ONE .OR. T .GT. V(RADIUS)) V(RADIUS) = T
C
C  ***  CHECK STOPX AND FUNCTION EVALUATION LIMIT  ***
C
 180  IF (.NOT. STOPX(DUMMY)) GO TO 200
       IV(1) = 11
       GO TO 210
C
C     ***  COME HERE WHEN RESTARTING AFTER FUNC. EVAL. LIMIT OR STOPX.
C
 190  IF (V(F) .GE. V(F0)) GO TO 200
       V(RADFAC) = ONE
       K = IV(NITER)
       GO TO 160
C
 200  IF (IV(NFCALL) .LT. IV(MXFCAL)) GO TO 220
       IV(1) = 9
 210     IF (V(F) .GE. V(F0)) GO TO 440
C
C        ***  IN CASE OF STOPX OR FUNCTION EVALUATION LIMIT WITH
C        ***  IMPROVED V(F), EVALUATE THE GRADIENT AT X.
C
            IV(CNVCOD) = IV(1)
            GO TO 370
C
C. . . . . . . . . . . . .  COMPUTE CANDIDATE STEP  . . . . . . . . . .
C
 220  STEP1 = IV(STEP)
      L = IV(LMAT)
      W1 = IV(W)
      IPI = IV(PERM)
      IPN = IPI + N
      IPIV2 = IPN + N
      TG1 = IV(DG)
      TD1 = TG1 + N
      X01 = IV(X0)
      X11 = X01 + N
      CALL DG7QSB(B, D, H, G, IV(IPI), IV(IPN), IV(IPIV2), IV(KAGQT),
     1            V(L), LV, N, IV(N0), IV(NC), V(STEP1), V(TD1), V(TG1),
     2            V, V(W1), V(X11), V(X01))
      IF (IV(IRC) .NE. 6) GO TO 230
       IF (IV(RESTOR) .NE. 2) GO TO 250
       RSTRST = 2
       GO TO 260
C
C  ***  CHECK WHETHER EVALUATING F(X0 + STEP) LOOKS WORTHWHILE  ***
C
 230  IV(TOOBIG) = 0
      IF (V(DSTNRM) .LE. ZERO) GO TO 250
      IF (IV(IRC) .NE. 5) GO TO 240
      IF (V(RADFAC) .LE. ONE) GO TO 240
      IF (V(PREDUC) .GT. ONEP2 * V(FDIF)) GO TO 240
       IF (IV(RESTOR) .NE. 2) GO TO 250
       RSTRST = 0
       GO TO 260
C
C  ***  COMPUTE F(X0 + STEP)  ***
C
 240  CALL DV2AXY(N, X, ONE, V(STEP1), V(X01))
      IV(NFCALL) = IV(NFCALL) + 1
      IV(1) = 1
      GO TO 450
C
C. . . . . . . . . . . . .  ASSESS CANDIDATE STEP  . . . . . . . . . . .
C
 250  RSTRST = 3
 260  X01 = IV(X0)
      V(RELDX) = DRLDST(N, D, X, V(X01))
      CALL DA7SST(IV, LIV, LV, V)
      STEP1 = IV(STEP)
      LSTGST = STEP1 + 2*N
      I = IV(RESTOR) + 1
      GO TO (300, 270, 280, 290), I
 270  CALL DV7CPY(N, X, V(X01))
      GO TO 300
 280   CALL DV7CPY(N, V(LSTGST), X)
       GO TO 300
 290     CALL DV7CPY(N, X, V(LSTGST))
       CALL DV2AXY(N, V(STEP1), NEGONE, V(X01), X)
       V(RELDX) = DRLDST(N, D, X, V(X01))
       IV(RESTOR) = RSTRST
C
 300  K = IV(IRC)
      GO TO (310,340,340,340,310,320,330,330,330,330,330,330,410,380), K
C
C     ***  RECOMPUTE STEP WITH NEW RADIUS  ***
C
 310     V(RADIUS) = V(RADFAC) * V(DSTNRM)
       GO TO 180
C
C  ***  COMPUTE STEP OF LENGTH V(LMAXS) FOR SINGULAR CONVERGENCE TEST.
C
 320  V(RADIUS) = V(LMAXS)
      GO TO 220
C
C  ***  CONVERGENCE OR FALSE CONVERGENCE  ***
C
 330  IV(CNVCOD) = K - 4
      IF (V(F) .GE. V(F0)) GO TO 430
       IF (IV(XIRC) .EQ. 14) GO TO 430
            IV(XIRC) = 14
C
C. . . . . . . . . . . .  PROCESS ACCEPTABLE STEP  . . . . . . . . . . .
C
 340  IF (IV(IRC) .NE. 3) GO TO 370
       TEMP1 = LSTGST
C
C     ***  PREPARE FOR GRADIENT TESTS  ***
C     ***  SET  TEMP1 = HESSIAN * STEP + G(X0)
C     ***             = DIAG(D) * (H * STEP + G(X0))
C
       K = TEMP1
       STEP0 = STEP1 - 1
       IPI = IV(PERM)
       DO 350 I = 1, N
            J = IV(IPI)
            IPI = IPI + 1
            STEP1 = STEP0 + J
            V(K) = D(J) * V(STEP1)
            K = K + 1
 350          CONTINUE
C        USE X0 VECTOR AS TEMPORARY.
       CALL DS7LVM(N, V(X01), H, V(TEMP1))
       TEMP0 = TEMP1 - 1
       IPI = IV(PERM)
       DO 360 I = 1, N
            J = IV(IPI)
            IPI = IPI + 1
            TEMP1 = TEMP0 + J
            V(TEMP1) = D(J) * V(X01) + G(J)
            X01 = X01 + 1
 360          CONTINUE
C
C  ***  COMPUTE GRADIENT AND HESSIAN  ***
C
 370  IV(NGCALL) = IV(NGCALL) + 1
      IV(TOOBIG) = 0
      IV(1) = 2
      GO TO 450
C
 380  IV(1) = 2
      IF (IV(IRC) .NE. 3) GO TO 140
C
C  ***  SET V(RADFAC) BY GRADIENT TESTS  ***
C
      STEP1 = IV(STEP)
C     *** TEMP1 = STLSTG ***
      TEMP1 = STEP1 + 2*N
C
C     ***  SET  TEMP1 = DIAG(D)**-1 * (HESSIAN*STEP + (G(X0)-G(X)))  ***
C
      K = TEMP1
      DO 390 I = 1, N
       V(K) = (V(K) - G(I)) / D(I)
       K = K + 1
 390     CONTINUE
C
C     ***  DO GRADIENT TESTS  ***
C
      IF (DV2NRM(N, V(TEMP1)) .LE. V(DGNORM) * V(TUNER4)) GO TO 400
         IF (DD7TPR(N, G, V(STEP1))
     1               .GE. V(GTSTEP) * V(TUNER5))  GO TO 140
 400            V(RADFAC) = V(INCFAC)
            GO TO 140
C
C. . . . . . . . . . . . . .  MISC. DETAILS  . . . . . . . . . . . . . .
C
C  ***  BAD PARAMETERS TO ASSESS  ***
C
 410  IV(1) = 64
      GO TO 440
C
C  ***  INCONSISTENT B  ***
C
 420  IV(1) = 82
      GO TO 440
C
C  ***  PRINT SUMMARY OF FINAL ITERATION AND OTHER REQUESTED ITEMS  ***
C
 430  IV(1) = IV(CNVCOD)
      IV(CNVCOD) = 0
 440  CALL DITSUM(D, G, IV, LIV, LV, N, V, X)
      GO TO 999
C
C  ***  PROJECT X INTO FEASIBLE REGION (PRIOR TO COMPUTING F OR G)  ***
C
 450  DO 460 I = 1, N
       IF (X(I) .LT. B(1,I)) X(I) = B(1,I)
       IF (X(I) .GT. B(2,I)) X(I) = B(2,I)
 460     CONTINUE
C
 999  RETURN
C
C  ***  LAST CARD OF DRMNHB FOLLOWS  ***
      END
      SUBROUTINE DRMNH(D, FX, G, H, IV, LH, LIV, LV, N, V, X)
C
C  ***  CARRY OUT  DMNH (UNCONSTRAINED MINIMIZATION) ITERATIONS, USING
C  ***  HESSIAN MATRIX PROVIDED BY THE CALLER.
C
C  ***  PARAMETER DECLARATIONS  ***
C
      INTEGER LH, LIV, LV, N
      INTEGER IV(LIV)
      DOUBLE PRECISION D(N), FX, G(N), H(LH), V(LV), X(N)
C
C--------------------------  PARAMETER USAGE  --------------------------
C
C D.... SCALE VECTOR.
C FX... FUNCTION VALUE.
C G.... GRADIENT VECTOR.
C H.... LOWER TRIANGLE OF THE HESSIAN, STORED ROWWISE.
C IV... INTEGER VALUE ARRAY.
C LH... LENGTH OF H = P*(P+1)/2.
C LIV.. LENGTH OF IV (AT LEAST 60).
C LV... LENGTH OF V (AT LEAST 78 + N*(N+21)/2).
C N.... NUMBER OF VARIABLES (COMPONENTS IN X AND G).
C V.... FLOATING-POINT VALUE ARRAY.
C X.... PARAMETER VECTOR.
C
C  ***  DISCUSSION  ***
C
C        PARAMETERS IV, N, V, AND X ARE THE SAME AS THE CORRESPONDING
C     ONES TO  DMNH (WHICH SEE), EXCEPT THAT V CAN BE SHORTER (SINCE
C     THE PART OF V THAT  DMNH USES FOR STORING G AND H IS NOT NEEDED).
C     MOREOVER, COMPARED WITH  DMNH, IV(1) MAY HAVE THE TWO ADDITIONAL
C     OUTPUT VALUES 1 AND 2, WHICH ARE EXPLAINED BELOW, AS IS THE USE
C     OF IV(TOOBIG) AND IV(NFGCAL).  THE VALUE IV(G), WHICH IS AN
C     OUTPUT VALUE FROM  DMNH, IS NOT REFERENCED BY DRMNH OR THE
C     SUBROUTINES IT CALLS.
C
C IV(1) = 1 MEANS THE CALLER SHOULD SET FX TO F(X), THE FUNCTION VALUE
C             AT X, AND CALL DRMNH AGAIN, HAVING CHANGED NONE OF THE
C             OTHER PARAMETERS.  AN EXCEPTION OCCURS IF F(X) CANNOT BE
C             COMPUTED (E.G. IF OVERFLOW WOULD OCCUR), WHICH MAY HAPPEN
C             BECAUSE OF AN OVERSIZED STEP.  IN THIS CASE THE CALLER
C             SHOULD SET IV(TOOBIG) = IV(2) TO 1, WHICH WILL CAUSE
C             DRMNH TO IGNORE FX AND TRY A SMALLER STEP.  THE PARA-
C             METER NF THAT  DMNH PASSES TO CALCF (FOR POSSIBLE USE BY
C             CALCGH) IS A COPY OF IV(NFCALL) = IV(6).
C IV(1) = 2 MEANS THE CALLER SHOULD SET G TO G(X), THE GRADIENT OF F AT
C             X, AND H TO THE LOWER TRIANGLE OF H(X), THE HESSIAN OF F
C             AT X, AND CALL DRMNH AGAIN, HAVING CHANGED NONE OF THE
C             OTHER PARAMETERS EXCEPT PERHAPS THE SCALE VECTOR D.
C                  THE PARAMETER NF THAT  DMNH PASSES TO CALCG IS
C             IV(NFGCAL) = IV(7).  IF G(X) AND H(X) CANNOT BE EVALUATED,
C             THEN THE CALLER MAY SET IV(TOOBIG) TO 0, IN WHICH CASE
C             DRMNH WILL RETURN WITH IV(1) = 65.
C                  NOTE -- DRMNH OVERWRITES H WITH THE LOWER TRIANGLE
C             OF  DIAG(D)**-1 * H(X) * DIAG(D)**-1.
C.
C  ***  GENERAL  ***
C
C     CODED BY DAVID M. GAY (WINTER 1980).  REVISED SEPT. 1982.
C     THIS SUBROUTINE WAS WRITTEN IN CONNECTION WITH RESEARCH SUPPORTED
C     IN PART BY THE NATIONAL SCIENCE FOUNDATION UNDER GRANTS
C     MCS-7600324 AND MCS-7906671.
C
C        (SEE  DMNG AND  DMNH FOR REFERENCES.)
C
C+++++++++++++++++++++++++++  DECLARATIONS  ++++++++++++++++++++++++++++
C
C  ***  LOCAL VARIABLES  ***
C
      INTEGER DG1, DUMMY, I, J, K, L, LSTGST, NN1O2, RSTRST, STEP1,
     1        TEMP1, W1, X01
      DOUBLE PRECISION T
C
C     ***  CONSTANTS  ***
C
      DOUBLE PRECISION ONE, ONEP2, ZERO
C
C  ***  NO INTRINSIC FUNCTIONS  ***
C
C  ***  EXTERNAL FUNCTIONS AND SUBROUTINES  ***
C
      LOGICAL STOPX
      DOUBLE PRECISION DD7TPR, DRLDST, DV2NRM
      EXTERNAL DA7SST,DIVSET, DD7TPR,DD7DUP,DG7QTS,DITSUM,DPARCK,
     1         DRLDST, DS7LVM, STOPX,DV2AXY,DV7CPY, DV7SCP, DV2NRM
C
C DA7SST.... ASSESSES CANDIDATE STEP.
C DIVSET.... PROVIDES DEFAULT IV AND V INPUT VALUES.
C DD7TPR... RETURNS INNER PRODUCT OF TWO VECTORS.
C DD7DUP.... UPDATES SCALE VECTOR D.
C DG7QTS.... COMPUTES OPTIMALLY LOCALLY CONSTRAINED STEP.
C DITSUM.... PRINTS ITERATION SUMMARY AND INFO ON INITIAL AND FINAL X.
C DPARCK.... CHECKS VALIDITY OF INPUT IV AND V VALUES.
C DRLDST... COMPUTES V(RELDX) = RELATIVE STEP SIZE.
C DS7LVM... MULTIPLIES SYMMETRIC MATRIX TIMES VECTOR, GIVEN THE LOWER
C             TRIANGLE OF THE MATRIX.
C STOPX.... RETURNS .TRUE. IF THE BREAK KEY HAS BEEN PRESSED.
C DV2AXY.... COMPUTES SCALAR TIMES ONE VECTOR PLUS ANOTHER.
C DV7CPY.... COPIES ONE VECTOR TO ANOTHER.
C DV7SCP... SETS ALL ELEMENTS OF A VECTOR TO A SCALAR.
C DV2NRM... RETURNS THE 2-NORM OF A VECTOR.
C
C  ***  SUBSCRIPTS FOR IV AND V  ***
C
      INTEGER CNVCOD, DG, DGNORM, DINIT, DSTNRM, DTINIT, DTOL,
     1        DTYPE, D0INIT, F, F0, FDIF, GTSTEP, INCFAC, IRC, KAGQT,
     2        LMAT, LMAX0, LMAXS, MODE, MODEL, MXFCAL, MXITER, NEXTV,
     3        NFCALL, NFGCAL, NGCALL, NITER, PHMXFC, PREDUC, RADFAC,
     4        RADINC, RADIUS, RAD0, RELDX, RESTOR, STEP, STGLIM, STLSTG,
     5        STPPAR, TOOBIG, TUNER4, TUNER5, VNEED, W, XIRC, X0
C
C  ***  IV SUBSCRIPT VALUES  ***
C
      PARAMETER (CNVCOD=55, DG=37, DTOL=59, DTYPE=16, IRC=29, KAGQT=33,
     1           LMAT=42, MODE=35, MODEL=5, MXFCAL=17, MXITER=18,
     2           NEXTV=47, NFCALL=6, NFGCAL=7, NGCALL=30, NITER=31,
     3           RADINC=8, RESTOR=9, STEP=40, STGLIM=11, STLSTG=41,
     4           TOOBIG=2, VNEED=4, W=34, XIRC=13, X0=43)
C
C  ***  V SUBSCRIPT VALUES  ***
C
      PARAMETER (DGNORM=1, DINIT=38, DSTNRM=2, DTINIT=39, D0INIT=40,
     1           F=10, F0=13, FDIF=11, GTSTEP=4, INCFAC=23, LMAX0=35,
     2           LMAXS=36, PHMXFC=21, PREDUC=7, RADFAC=16, RADIUS=8,
     3           RAD0=9, RELDX=17, STPPAR=5, TUNER4=29, TUNER5=30)
C
      PARAMETER (ONE=1.D+0, ONEP2=1.2D+0, ZERO=0.D+0)
C
C+++++++++++++++++++++++++++++++  BODY  ++++++++++++++++++++++++++++++++
C
      I = IV(1)
      IF (I .EQ. 1) GO TO 30
      IF (I .EQ. 2) GO TO 40
C
C  ***  CHECK VALIDITY OF IV AND V INPUT VALUES  ***
C
      IF (IV(1) .EQ. 0) CALL DIVSET(2, IV, LIV, LV, V)
      IF (IV(1) .EQ. 12 .OR. IV(1) .EQ. 13)
     1     IV(VNEED) = IV(VNEED) + N*(N+21)/2 + 7
      CALL DPARCK(2, D, IV, LIV, LV, N, V)
      I = IV(1) - 2
      IF (I .GT. 12) GO TO 999
      NN1O2 = N * (N + 1) / 2
      IF (LH .GE. NN1O2) GO TO (220,220,220,220,220,220,160,120,160,
     1                          10,10,20), I
       IV(1) = 66
       GO TO 400
C
C  ***  STORAGE ALLOCATION  ***
C
 10   IV(DTOL) = IV(LMAT) + NN1O2
      IV(X0) = IV(DTOL) + 2*N
      IV(STEP) = IV(X0) + N
      IV(STLSTG) = IV(STEP) + N
      IV(DG) = IV(STLSTG) + N
      IV(W) = IV(DG) + N
      IV(NEXTV) = IV(W) + 4*N + 7
      IF (IV(1) .NE. 13) GO TO 20
       IV(1) = 14
       GO TO 999
C
C  ***  INITIALIZATION  ***
C
 20   IV(NITER) = 0
      IV(NFCALL) = 1
      IV(NGCALL) = 1
      IV(NFGCAL) = 1
      IV(MODE) = -1
      IV(MODEL) = 1
      IV(STGLIM) = 1
      IV(TOOBIG) = 0
      IV(CNVCOD) = 0
      IV(RADINC) = 0
      V(RAD0) = ZERO
      V(STPPAR) = ZERO
      IF (V(DINIT) .GE. ZERO) CALL DV7SCP(N, D, V(DINIT))
      K = IV(DTOL)
      IF (V(DTINIT) .GT. ZERO) CALL DV7SCP(N, V(K), V(DTINIT))
      K = K + N
      IF (V(D0INIT) .GT. ZERO) CALL DV7SCP(N, V(K), V(D0INIT))
      IV(1) = 1
      GO TO 999
C
 30   V(F) = FX
      IF (IV(MODE) .GE. 0) GO TO 220
      V(F0) = FX
      IV(1) = 2
      IF (IV(TOOBIG) .EQ. 0) GO TO 999
       IV(1) = 63
       GO TO 400
C
C  ***  MAKE SURE GRADIENT COULD BE COMPUTED  ***
C
 40   IF (IV(TOOBIG) .EQ. 0) GO TO 50
       IV(1) = 65
       GO TO 400
C
C  ***  UPDATE THE SCALE VECTOR D  ***
C
 50   DG1 = IV(DG)
      IF (IV(DTYPE) .LE. 0) GO TO 70
      K = DG1
      J = 0
      DO 60 I = 1, N
       J = J + I
       V(K) = H(J)
       K = K + 1
 60      CONTINUE
      CALL DD7DUP(D, V(DG1), IV, LIV, LV, N, V)
C
C  ***  COMPUTE SCALED GRADIENT AND ITS NORM  ***
C
 70   DG1 = IV(DG)
      K = DG1
      DO 80 I = 1, N
       V(K) = G(I) / D(I)
       K = K + 1
 80      CONTINUE
      V(DGNORM) = DV2NRM(N, V(DG1))
C
C  ***  COMPUTE SCALED HESSIAN  ***
C
      K = 1
      DO 100 I = 1, N
       T = ONE / D(I)
       DO 90 J = 1, I
            H(K) = T * H(K) / D(J)
            K = K + 1
 90           CONTINUE
 100     CONTINUE
C
      IF (IV(CNVCOD) .NE. 0) GO TO 390
      IF (IV(MODE) .EQ. 0) GO TO 350
C
C  ***  ALLOW FIRST STEP TO HAVE SCALED 2-NORM AT MOST V(LMAX0)  ***
C
      V(RADIUS) = V(LMAX0) / (ONE + V(PHMXFC))
C
      IV(MODE) = 0
C
C
C-----------------------------  MAIN LOOP  -----------------------------
C
C
C  ***  PRINT ITERATION SUMMARY, CHECK ITERATION LIMIT  ***
C
 110  CALL DITSUM(D, G, IV, LIV, LV, N, V, X)
 120  K = IV(NITER)
      IF (K .LT. IV(MXITER)) GO TO 130
       IV(1) = 10
       GO TO 400
C
 130  IV(NITER) = K + 1
C
C  ***  INITIALIZE FOR START OF NEXT ITERATION  ***
C
      DG1 = IV(DG)
      X01 = IV(X0)
      V(F0) = V(F)
      IV(IRC) = 4
      IV(KAGQT) = -1
C
C     ***  COPY X TO X0  ***
C
      CALL DV7CPY(N, V(X01), X)
C
C  ***  UPDATE RADIUS  ***
C
      IF (K .EQ. 0) GO TO 150
      STEP1 = IV(STEP)
      K = STEP1
      DO 140 I = 1, N
       V(K) = D(I) * V(K)
       K = K + 1
 140     CONTINUE
      V(RADIUS) = V(RADFAC) * DV2NRM(N, V(STEP1))
C
C  ***  CHECK STOPX AND FUNCTION EVALUATION LIMIT  ***
C
 150  IF (.NOT. STOPX(DUMMY)) GO TO 170
       IV(1) = 11
       GO TO 180
C
C     ***  COME HERE WHEN RESTARTING AFTER FUNC. EVAL. LIMIT OR STOPX.
C
 160  IF (V(F) .GE. V(F0)) GO TO 170
       V(RADFAC) = ONE
       K = IV(NITER)
       GO TO 130
C
 170  IF (IV(NFCALL) .LT. IV(MXFCAL)) GO TO 190
       IV(1) = 9
 180     IF (V(F) .GE. V(F0)) GO TO 400
C
C        ***  IN CASE OF STOPX OR FUNCTION EVALUATION LIMIT WITH
C        ***  IMPROVED V(F), EVALUATE THE GRADIENT AT X.
C
            IV(CNVCOD) = IV(1)
            GO TO 340
C
C. . . . . . . . . . . . .  COMPUTE CANDIDATE STEP  . . . . . . . . . .
C
 190  STEP1 = IV(STEP)
      DG1 = IV(DG)
      L = IV(LMAT)
      W1 = IV(W)
      CALL DG7QTS(D, V(DG1), H, IV(KAGQT), V(L), N, V(STEP1), V, V(W1))
      IF (IV(IRC) .NE. 6) GO TO 200
       IF (IV(RESTOR) .NE. 2) GO TO 220
       RSTRST = 2
       GO TO 230
C
C  ***  CHECK WHETHER EVALUATING F(X0 + STEP) LOOKS WORTHWHILE  ***
C
 200  IV(TOOBIG) = 0
      IF (V(DSTNRM) .LE. ZERO) GO TO 220
      IF (IV(IRC) .NE. 5) GO TO 210
      IF (V(RADFAC) .LE. ONE) GO TO 210
      IF (V(PREDUC) .GT. ONEP2 * V(FDIF)) GO TO 210
       IF (IV(RESTOR) .NE. 2) GO TO 220
       RSTRST = 0
       GO TO 230
C
C  ***  COMPUTE F(X0 + STEP)  ***
C
 210  X01 = IV(X0)
      STEP1 = IV(STEP)
      CALL DV2AXY(N, X, ONE, V(STEP1), V(X01))
      IV(NFCALL) = IV(NFCALL) + 1
      IV(1) = 1
      GO TO 999
C
C. . . . . . . . . . . . .  ASSESS CANDIDATE STEP  . . . . . . . . . . .
C
 220  RSTRST = 3
 230  X01 = IV(X0)
      V(RELDX) = DRLDST(N, D, X, V(X01))
      CALL DA7SST(IV, LIV, LV, V)
      STEP1 = IV(STEP)
      LSTGST = IV(STLSTG)
      I = IV(RESTOR) + 1
      GO TO (270, 240, 250, 260), I
 240  CALL DV7CPY(N, X, V(X01))
      GO TO 270
 250   CALL DV7CPY(N, V(LSTGST), V(STEP1))
       GO TO 270
 260     CALL DV7CPY(N, V(STEP1), V(LSTGST))
       CALL DV2AXY(N, X, ONE, V(STEP1), V(X01))
       V(RELDX) = DRLDST(N, D, X, V(X01))
       IV(RESTOR) = RSTRST
C
 270  K = IV(IRC)
      GO TO (280,310,310,310,280,290,300,300,300,300,300,300,380,350), K
C
C     ***  RECOMPUTE STEP WITH NEW RADIUS  ***
C
 280     V(RADIUS) = V(RADFAC) * V(DSTNRM)
       GO TO 150
C
C  ***  COMPUTE STEP OF LENGTH V(LMAXS) FOR SINGULAR CONVERGENCE TEST.
C
 290  V(RADIUS) = V(LMAXS)
      GO TO 190
C
C  ***  CONVERGENCE OR FALSE CONVERGENCE  ***
C
 300  IV(CNVCOD) = K - 4
      IF (V(F) .GE. V(F0)) GO TO 390
       IF (IV(XIRC) .EQ. 14) GO TO 390
            IV(XIRC) = 14
C
C. . . . . . . . . . . .  PROCESS ACCEPTABLE STEP  . . . . . . . . . . .
C
 310  IF (IV(IRC) .NE. 3) GO TO 340
       TEMP1 = LSTGST
C
C     ***  PREPARE FOR GRADIENT TESTS  ***
C     ***  SET  TEMP1 = HESSIAN * STEP + G(X0)
C     ***             = DIAG(D) * (H * STEP + G(X0))
C
C        USE X0 VECTOR AS TEMPORARY.
       K = X01
       DO 320 I = 1, N
            V(K) = D(I) * V(STEP1)
            K = K + 1
            STEP1 = STEP1 + 1
 320          CONTINUE
       CALL DS7LVM(N, V(TEMP1), H, V(X01))
       DO 330 I = 1, N
            V(TEMP1) = D(I) * V(TEMP1) + G(I)
            TEMP1 = TEMP1 + 1
 330          CONTINUE
C
C  ***  COMPUTE GRADIENT AND HESSIAN  ***
C
 340  IV(NGCALL) = IV(NGCALL) + 1
      IV(TOOBIG) = 0
      IV(1) = 2
      GO TO 999
C
 350  IV(1) = 2
      IF (IV(IRC) .NE. 3) GO TO 110
C
C  ***  SET V(RADFAC) BY GRADIENT TESTS  ***
C
      TEMP1 = IV(STLSTG)
      STEP1 = IV(STEP)
C
C     ***  SET  TEMP1 = DIAG(D)**-1 * (HESSIAN*STEP + (G(X0)-G(X)))  ***
C
      K = TEMP1
      DO 360 I = 1, N
       V(K) = (V(K) - G(I)) / D(I)
       K = K + 1
 360     CONTINUE
C
C     ***  DO GRADIENT TESTS  ***
C
      IF (DV2NRM(N, V(TEMP1)) .LE. V(DGNORM) * V(TUNER4)) GO TO 370
         IF (DD7TPR(N, G, V(STEP1))
     1               .GE. V(GTSTEP) * V(TUNER5))  GO TO 110
 370            V(RADFAC) = V(INCFAC)
            GO TO 110
C
C. . . . . . . . . . . . . .  MISC. DETAILS  . . . . . . . . . . . . . .
C
C  ***  BAD PARAMETERS TO ASSESS  ***
C
 380  IV(1) = 64
      GO TO 400
C
C  ***  PRINT SUMMARY OF FINAL ITERATION AND OTHER REQUESTED ITEMS  ***
C
 390  IV(1) = IV(CNVCOD)
      IV(CNVCOD) = 0
 400  CALL DITSUM(D, G, IV, LIV, LV, N, V, X)
C
 999  RETURN
C
C  ***  LAST CARD OF DRMNH FOLLOWS  ***
      END
      SUBROUTINE DQ7RSH(K, P, HAVQTR, QTR, R, W)
C
C  ***  PERMUTE COLUMN K OF R TO COLUMN P, MODIFY QTR ACCORDINGLY  ***
C
      LOGICAL HAVQTR
      INTEGER K, P
      DOUBLE PRECISION QTR(P), R(1), W(P)
C     DIMENSION R(P*(P+1)/2)
C
      DOUBLE PRECISION DH2RFG
      EXTERNAL DH2RFA, DH2RFG,DV7CPY
C
C  ***  LOCAL VARIABLES  ***
C
      INTEGER I, I1, J, JM1, JP1, J1, KM1, K1, PM1
      DOUBLE PRECISION A, B, T, WJ, X, Y, Z, ZERO
C
      DATA ZERO/0.0D+0/
C
C+++++++++++++++++++++++++++++++  BODY  ++++++++++++++++++++++++++++++++
C
      IF (K .GE. P) GO TO 999
      KM1 = K - 1
      K1 = K * KM1 / 2
      CALL DV7CPY(K, W, R(K1+1))
      WJ = W(K)
      PM1 = P - 1
      J1 = K1 + KM1
      DO 50 J = K, PM1
       JM1 = J - 1
       JP1 = J + 1
       IF (JM1 .GT. 0) CALL DV7CPY(JM1, R(K1+1), R(J1+2))
       J1 = J1 + JP1
       K1 = K1 + J
       A = R(J1)
       B = R(J1+1)
       IF (B .NE. ZERO) GO TO 10
            R(K1) = A
            X = ZERO
            Z = ZERO
            GO TO 40
 10      R(K1) = DH2RFG(A, B, X, Y, Z)
       IF (J .EQ. PM1) GO TO 30
       I1 = J1
       DO 20 I = JP1, PM1
            I1 = I1 + I
            CALL DH2RFA(1, R(I1), R(I1+1), X, Y, Z)
 20           CONTINUE
 30      IF (HAVQTR) CALL DH2RFA(1, QTR(J), QTR(JP1), X, Y, Z)
 40      T = X * WJ
       W(J) = WJ + T
       WJ = T * Z
 50      CONTINUE
      W(P) = WJ
      CALL DV7CPY(P, R(K1+1), W)
 999  RETURN
      END
      SUBROUTINE DRMNF(D, FX, IV, LIV, LV, N, V, X)
C
C  ***  ITERATION DRIVER FOR  DMNF...
C  ***  MINIMIZE GENERAL UNCONSTRAINED OBJECTIVE FUNCTION USING
C  ***  FINITE-DIFFERENCE GRADIENTS AND SECANT HESSIAN APPROXIMATIONS.
C
      INTEGER LIV, LV, N
      INTEGER IV(LIV)
      DOUBLE PRECISION D(N), FX, X(N), V(LV)
C     DIMENSION V(77 + N*(N+17)/2)
C
C  ***  PURPOSE  ***
C
C        THIS ROUTINE INTERACTS WITH SUBROUTINE  DRMNG  IN AN ATTEMPT
C     TO FIND AN N-VECTOR  X*  THAT MINIMIZES THE (UNCONSTRAINED)
C     OBJECTIVE FUNCTION  FX = F(X)  COMPUTED BY THE CALLER.  (OFTEN
C     THE  X*  FOUND IS A LOCAL MINIMIZER RATHER THAN A GLOBAL ONE.)
C
C  ***  PARAMETERS  ***
C
C        THE PARAMETERS FOR DRMNF ARE THE SAME AS THOSE FOR  DMNG
C     (WHICH SEE), EXCEPT THAT CALCF, CALCG, UIPARM, URPARM, AND UFPARM
C     ARE OMITTED, AND A PARAMETER  FX  FOR THE OBJECTIVE FUNCTION
C     VALUE AT X IS ADDED.  INSTEAD OF CALLING CALCG TO OBTAIN THE
C     GRADIENT OF THE OBJECTIVE FUNCTION AT X, DRMNF CALLS DS7GRD,
C     WHICH COMPUTES AN APPROXIMATION TO THE GRADIENT BY FINITE
C     (FORWARD AND CENTRAL) DIFFERENCES USING THE METHOD OF REF. 1.
C     THE FOLLOWING INPUT COMPONENT IS OF INTEREST IN THIS REGARD
C     (AND IS NOT DESCRIBED IN  DMNG).
C
C V(ETA0)..... V(42) IS AN ESTIMATED BOUND ON THE RELATIVE ERROR IN THE
C             OBJECTIVE FUNCTION VALUE COMPUTED BY CALCF...
C                  (TRUE VALUE) = (COMPUTED VALUE) * (1 + E),
C             WHERE ABS(E) .LE. V(ETA0).  DEFAULT = MACHEP * 10**3,
C             WHERE MACHEP IS THE UNIT ROUNDOFF.
C
C        THE OUTPUT VALUES IV(NFCALL) AND IV(NGCALL) HAVE DIFFERENT
C     MEANINGS FOR  DMNF THAN FOR  DMNG...
C
C IV(NFCALL)... IV(6) IS THE NUMBER OF CALLS SO FAR MADE ON CALCF (I.E.,
C             FUNCTION EVALUATIONS) EXCLUDING THOSE MADE ONLY FOR
C             COMPUTING GRADIENTS.  THE INPUT VALUE IV(MXFCAL) IS A
C             LIMIT ON IV(NFCALL).
C IV(NGCALL)... IV(30) IS THE NUMBER OF FUNCTION EVALUATIONS MADE ONLY
C             FOR COMPUTING GRADIENTS.  THE TOTAL NUMBER OF FUNCTION
C             EVALUATIONS IS THUS  IV(NFCALL) + IV(NGCALL).
C
C  ***  REFERENCES  ***
C
C 1. STEWART, G.W. (1967), A MODIFICATION OF DAVIDON*S MINIMIZATION
C        METHOD TO ACCEPT DIFFERENCE APPROXIMATIONS OF DERIVATIVES,
C        J. ASSOC. COMPUT. MACH. 14, PP. 72-83.
C.
C  ***  GENERAL  ***
C
C     CODED BY DAVID M. GAY (AUGUST 1982).
C
C----------------------------  DECLARATIONS  ---------------------------
C
      DOUBLE PRECISION DD7TPR
      EXTERNAL DIVSET, DD7TPR, DS7GRD, DRMNG, DV7SCP
C
C DIVSET.... SUPPLIES DEFAULT PARAMETER VALUES.
C DD7TPR... RETURNS INNER PRODUCT OF TWO VECTORS.
C DS7GRD... COMPUTES FINITE-DIFFERENCE GRADIENT APPROXIMATION.
C DRMNG.... REVERSE-COMMUNICATION ROUTINE THAT DOES  DMNG ALGORITHM.
C DV7SCP... SETS ALL ELEMENTS OF A VECTOR TO A SCALAR.
C
      INTEGER ALPHA, G1, I, IV1, J, K, W
      DOUBLE PRECISION ZERO
C
C  ***  SUBSCRIPTS FOR IV   ***
C
      INTEGER ETA0, F, G, LMAT, NEXTV, NGCALL, NITER, SGIRC, TOOBIG,
     1        VNEED
C
      PARAMETER (ETA0=42, F=10, G=28, LMAT=42, NEXTV=47, NGCALL=30,
     1           NITER=31, SGIRC=57, TOOBIG=2, VNEED=4)
      PARAMETER (ZERO=0.D+0)
C
C+++++++++++++++++++++++++++++++  BODY  ++++++++++++++++++++++++++++++++
C
      IV1 = IV(1)
      IF (IV1 .EQ. 1) GO TO 10
      IF (IV1 .EQ. 2) GO TO 50
      IF (IV(1) .EQ. 0) CALL DIVSET(2, IV, LIV, LV, V)
      IV1 = IV(1)
      IF (IV1 .EQ. 12 .OR. IV1 .EQ. 13) IV(VNEED) = IV(VNEED) + 2*N + 6
      IF (IV1 .EQ. 14) GO TO 10
      IF (IV1 .GT. 2 .AND. IV1 .LT. 12) GO TO 10
      G1 = 1
      IF (IV1 .EQ. 12) IV(1) = 13
      GO TO 20
C
 10   G1 = IV(G)
C
 20   CALL DRMNG(D, FX, V(G1), IV, LIV, LV, N, V, X)
      IF (IV(1) .LT. 2) GO TO 999
      IF (IV(1) .GT. 2) GO TO 70
C
C  ***  COMPUTE GRADIENT  ***
C
      IF (IV(NITER) .EQ. 0) CALL DV7SCP(N, V(G1), ZERO)
      J = IV(LMAT)
      K = G1 - N
      DO 40 I = 1, N
       V(K) = DD7TPR(I, V(J), V(J))
       K = K + 1
       J = J + I
 40      CONTINUE
C     ***  UNDO INCREMENT OF IV(NGCALL) DONE BY DRMNG  ***
      IV(NGCALL) = IV(NGCALL) - 1
C     ***  STORE RETURN CODE FROM DS7GRD IN IV(SGIRC)  ***
      IV(SGIRC) = 0
C     ***  X MAY HAVE BEEN RESTORED, SO COPY BACK FX... ***
      FX = V(F)
      GO TO 60
C
C     ***  GRADIENT LOOP  ***
C
 50   IF (IV(TOOBIG) .NE. 0) GO TO 10
C
 60   G1 = IV(G)
      ALPHA = G1 - N
      W = ALPHA - 6
      CALL DS7GRD(V(ALPHA), D, V(ETA0), FX, V(G1), IV(SGIRC), N, V(W),X)
      IF (IV(SGIRC) .EQ. 0) GO TO 10
       IV(NGCALL) = IV(NGCALL) + 1
       GO TO 999
C
 70   IF (IV(1) .NE. 14) GO TO 999
C
C  ***  STORAGE ALLOCATION  ***
C
      IV(G) = IV(NEXTV) + N + 6
      IV(NEXTV) = IV(G) + N
      IF (IV1 .NE. 13) GO TO 10
C
 999  RETURN
C  ***  LAST CARD OF DRMNF FOLLOWS  ***
      END
      SUBROUTINE DL7VML(N, X, L, Y)
C
C  ***  COMPUTE  X = L*Y, WHERE  L  IS AN  N X N  LOWER TRIANGULAR
C  ***  MATRIX STORED COMPACTLY BY ROWS.  X AND Y MAY OCCUPY THE SAME
C  ***  STORAGE.  ***
C
      INTEGER N
      DOUBLE PRECISION X(N), L(1), Y(N)
C     DIMENSION L(N*(N+1)/2)
      INTEGER I, II, IJ, I0, J, NP1
      DOUBLE PRECISION T, ZERO
      PARAMETER (ZERO=0.D+0)
C
      NP1 = N + 1
      I0 = N*(N+1)/2
      DO 20 II = 1, N
       I = NP1 - II
       I0 = I0 - I
       T = ZERO
       DO 10 J = 1, I
            IJ = I0 + J
            T = T + L(IJ)*Y(J)
 10           CONTINUE
       X(I) = T
 20      CONTINUE
      RETURN
C  ***  LAST CARD OF DL7VML FOLLOWS  ***
      END
      SUBROUTINE DA7SST(IV, LIV, LV, V)
C
C  ***  ASSESS CANDIDATE STEP (***SOL VERSION 2.3)  ***
C
      INTEGER LIV, LV
      INTEGER IV(LIV)
      DOUBLE PRECISION V(LV)
C
C  ***  PURPOSE  ***
C
C        THIS SUBROUTINE IS CALLED BY AN UNCONSTRAINED MINIMIZATION
C     ROUTINE TO ASSESS THE NEXT CANDIDATE STEP.  IT MAY RECOMMEND ONE
C     OF SEVERAL COURSES OF ACTION, SUCH AS ACCEPTING THE STEP, RECOM-
C     PUTING IT USING THE SAME OR A NEW QUADRATIC MODEL, OR HALTING DUE
C     TO CONVERGENCE OR FALSE CONVERGENCE.  SEE THE RETURN CODE LISTING
C     BELOW.
C
C--------------------------  PARAMETER USAGE  --------------------------
C
C  IV (I/O) INTEGER PARAMETER AND SCRATCH VECTOR -- SEE DESCRIPTION
C             BELOW OF IV VALUES REFERENCED.
C LIV (IN)  LENGTH OF IV ARRAY.
C  LV (IN)  LENGTH OF V ARRAY.
C   V (I/O) REAL PARAMETER AND SCRATCH VECTOR -- SEE DESCRIPTION
C             BELOW OF V VALUES REFERENCED.
C
C  ***  IV VALUES REFERENCED  ***
C
C    IV(IRC) (I/O) ON INPUT FOR THE FIRST STEP TRIED IN A NEW ITERATION,
C             IV(IRC) SHOULD BE SET TO 3 OR 4 (THE VALUE TO WHICH IT IS
C             SET WHEN STEP IS DEFINITELY TO BE ACCEPTED).  ON INPUT
C             AFTER STEP HAS BEEN RECOMPUTED, IV(IRC) SHOULD BE
C             UNCHANGED SINCE THE PREVIOUS RETURN OF DA7SST.
C                ON OUTPUT, IV(IRC) IS A RETURN CODE HAVING ONE OF THE
C             FOLLOWING VALUES...
C                  1 = SWITCH MODELS OR TRY SMALLER STEP.
C                  2 = SWITCH MODELS OR ACCEPT STEP.
C                  3 = ACCEPT STEP AND DETERMINE V(RADFAC) BY GRADIENT
C                       TESTS.
C                  4 = ACCEPT STEP, V(RADFAC) HAS BEEN DETERMINED.
C                  5 = RECOMPUTE STEP (USING THE SAME MODEL).
C                  6 = RECOMPUTE STEP WITH RADIUS = V(LMAXS) BUT DO NOT
C                       EVALUATE THE OBJECTIVE FUNCTION.
C                  7 = X-CONVERGENCE (SEE V(XCTOL)).
C                  8 = RELATIVE FUNCTION CONVERGENCE (SEE V(RFCTOL)).
C                  9 = BOTH X- AND RELATIVE FUNCTION CONVERGENCE.
C                 10 = ABSOLUTE FUNCTION CONVERGENCE (SEE V(AFCTOL)).
C                 11 = SINGULAR CONVERGENCE (SEE V(LMAXS)).
C                 12 = FALSE CONVERGENCE (SEE V(XFTOL)).
C                 13 = IV(IRC) WAS OUT OF RANGE ON INPUT.
C             RETURN CODE I HAS PRECEDENCE OVER I+1 FOR I = 9, 10, 11.
C IV(MLSTGD) (I/O) SAVED VALUE OF IV(MODEL).
C  IV(MODEL) (I/O) ON INPUT, IV(MODEL) SHOULD BE AN INTEGER IDENTIFYING
C             THE CURRENT QUADRATIC MODEL OF THE OBJECTIVE FUNCTION.
C             IF A PREVIOUS STEP YIELDED A BETTER FUNCTION REDUCTION,
C             THEN IV(MODEL) WILL BE SET TO IV(MLSTGD) ON OUTPUT.
C IV(NFCALL) (IN)  INVOCATION COUNT FOR THE OBJECTIVE FUNCTION.
C IV(NFGCAL) (I/O) VALUE OF IV(NFCALL) AT STEP THAT GAVE THE BIGGEST
C             FUNCTION REDUCTION THIS ITERATION.  IV(NFGCAL) REMAINS
C             UNCHANGED UNTIL A FUNCTION REDUCTION IS OBTAINED.
C IV(RADINC) (I/O) THE NUMBER OF RADIUS INCREASES (OR MINUS THE NUMBER
C             OF DECREASES) SO FAR THIS ITERATION.
C IV(RESTOR) (OUT) SET TO 1 IF V(F) HAS BEEN RESTORED AND X SHOULD BE
C             RESTORED TO ITS INITIAL VALUE, TO 2 IF X SHOULD BE SAVED,
C             TO 3 IF X SHOULD BE RESTORED FROM THE SAVED VALUE, AND TO
C             0 OTHERWISE.
C  IV(STAGE) (I/O) COUNT OF THE NUMBER OF MODELS TRIED SO FAR IN THE
C             CURRENT ITERATION.
C IV(STGLIM) (IN)  MAXIMUM NUMBER OF MODELS TO CONSIDER.
C IV(SWITCH) (OUT) SET TO 0 UNLESS A NEW MODEL IS BEING TRIED AND IT
C             GIVES A SMALLER FUNCTION VALUE THAN THE PREVIOUS MODEL,
C             IN WHICH CASE DA7SST SETS IV(SWITCH) = 1.
C IV(TOOBIG) (I/O)  IS NONZERO ON INPUT IF STEP WAS TOO BIG (E.G., IF
C             IT WOULD CAUSE OVERFLOW).  IT IS SET TO 0 ON RETURN.
C   IV(XIRC) (I/O) VALUE THAT IV(IRC) WOULD HAVE IN THE ABSENCE OF
C             CONVERGENCE, FALSE CONVERGENCE, AND OVERSIZED STEPS.
C
C  ***  V VALUES REFERENCED  ***
C
C V(AFCTOL) (IN)  ABSOLUTE FUNCTION CONVERGENCE TOLERANCE.  IF THE
C             ABSOLUTE VALUE OF THE CURRENT FUNCTION VALUE V(F) IS LESS
C             THAN V(AFCTOL) AND DA7SST DOES NOT RETURN WITH
C             IV(IRC) = 11, THEN DA7SST RETURNS WITH IV(IRC) = 10.
C V(DECFAC) (IN)  FACTOR BY WHICH TO DECREASE RADIUS WHEN IV(TOOBIG) IS
C             NONZERO.
C V(DSTNRM) (IN)  THE 2-NORM OF D*STEP.
C V(DSTSAV) (I/O) VALUE OF V(DSTNRM) ON SAVED STEP.
C   V(DST0) (IN)  THE 2-NORM OF D TIMES THE NEWTON STEP (WHEN DEFINED,
C             I.E., FOR V(NREDUC) .GE. 0).
C      V(F) (I/O) ON BOTH INPUT AND OUTPUT, V(F) IS THE OBJECTIVE FUNC-
C             TION VALUE AT X.  IF X IS RESTORED TO A PREVIOUS VALUE,
C             THEN V(F) IS RESTORED TO THE CORRESPONDING VALUE.
C   V(FDIF) (OUT) THE FUNCTION REDUCTION V(F0) - V(F) (FOR THE OUTPUT
C             VALUE OF V(F) IF AN EARLIER STEP GAVE A BIGGER FUNCTION
C             DECREASE, AND FOR THE INPUT VALUE OF V(F) OTHERWISE).
C V(FLSTGD) (I/O) SAVED VALUE OF V(F).
C     V(F0) (IN)  OBJECTIVE FUNCTION VALUE AT START OF ITERATION.
C V(GTSLST) (I/O) VALUE OF V(GTSTEP) ON SAVED STEP.
C V(GTSTEP) (IN)  INNER PRODUCT BETWEEN STEP AND GRADIENT.
C V(INCFAC) (IN)  MINIMUM FACTOR BY WHICH TO INCREASE RADIUS.
C  V(LMAXS) (IN)  MAXIMUM REASONABLE STEP SIZE (AND INITIAL STEP BOUND).
C             IF THE ACTUAL FUNCTION DECREASE IS NO MORE THAN TWICE
C             WHAT WAS PREDICTED, IF A RETURN WITH IV(IRC) = 7, 8, OR 9
C             DOES NOT OCCUR, IF V(DSTNRM) .GT. V(LMAXS) OR THE CURRENT
C             STEP IS A NEWTON STEP, AND IF
C             V(PREDUC) .LE. V(SCTOL) * ABS(V(F0)), THEN DA7SST RETURNS
C             WITH IV(IRC) = 11.  IF SO DOING APPEARS WORTHWHILE, THEN
C            DA7SST REPEATS THIS TEST (DISALLOWING A FULL NEWTON STEP)
C             WITH V(PREDUC) COMPUTED FOR A STEP OF LENGTH V(LMAXS)
C             (BY A RETURN WITH IV(IRC) = 6).
C V(NREDUC) (I/O)  FUNCTION REDUCTION PREDICTED BY QUADRATIC MODEL FOR
C             NEWTON STEP.  IF DA7SST IS CALLED WITH IV(IRC) = 6, I.E.,
C             IF V(PREDUC) HAS BEEN COMPUTED WITH RADIUS = V(LMAXS) FOR
C             USE IN THE SINGULAR CONVERGENCE TEST, THEN V(NREDUC) IS
C             SET TO -V(PREDUC) BEFORE THE LATTER IS RESTORED.
C V(PLSTGD) (I/O) VALUE OF V(PREDUC) ON SAVED STEP.
C V(PREDUC) (I/O) FUNCTION REDUCTION PREDICTED BY QUADRATIC MODEL FOR
C             CURRENT STEP.
C V(RADFAC) (OUT) FACTOR TO BE USED IN DETERMINING THE NEW RADIUS,
C             WHICH SHOULD BE V(RADFAC)*DST, WHERE  DST  IS EITHER THE
C             OUTPUT VALUE OF V(DSTNRM) OR THE 2-NORM OF
C             DIAG(NEWD)*STEP  FOR THE OUTPUT VALUE OF STEP AND THE
C             UPDATED VERSION, NEWD, OF THE SCALE VECTOR D.  FOR
C             IV(IRC) = 3, V(RADFAC) = 1.0 IS RETURNED.
C V(RDFCMN) (IN)  MINIMUM VALUE FOR V(RADFAC) IN TERMS OF THE INPUT
C             VALUE OF V(DSTNRM) -- SUGGESTED VALUE = 0.1.
C V(RDFCMX) (IN)  MAXIMUM VALUE FOR V(RADFAC) -- SUGGESTED VALUE = 4.0.
C  V(RELDX) (IN) SCALED RELATIVE CHANGE IN X CAUSED BY STEP, COMPUTED
C             (E.G.) BY FUNCTION  DRLDST  AS
C                 MAX (D(I)*ABS(X(I)-X0(I)), 1 .LE. I .LE. P) /
C                    MAX (D(I)*(ABS(X(I))+ABS(X0(I))), 1 .LE. I .LE. P).
C V(RFCTOL) (IN)  RELATIVE FUNCTION CONVERGENCE TOLERANCE.  IF THE
C             ACTUAL FUNCTION REDUCTION IS AT MOST TWICE WHAT WAS PRE-
C             DICTED AND  V(NREDUC) .LE. V(RFCTOL)*ABS(V(F0)),  THEN
C            DA7SST RETURNS WITH IV(IRC) = 8 OR 9.
C  V(SCTOL) (IN)  SINGULAR CONVERGENCE TOLERANCE -- SEE V(LMAXS).
C V(STPPAR) (IN)  MARQUARDT PARAMETER -- 0 MEANS FULL NEWTON STEP.
C V(TUNER1) (IN)  TUNING CONSTANT USED TO DECIDE IF THE FUNCTION
C             REDUCTION WAS MUCH LESS THAN EXPECTED.  SUGGESTED
C             VALUE = 0.1.
C V(TUNER2) (IN)  TUNING CONSTANT USED TO DECIDE IF THE FUNCTION
C             REDUCTION WAS LARGE ENOUGH TO ACCEPT STEP.  SUGGESTED
C             VALUE = 10**-4.
C V(TUNER3) (IN)  TUNING CONSTANT USED TO DECIDE IF THE RADIUS
C             SHOULD BE INCREASED.  SUGGESTED VALUE = 0.75.
C  V(XCTOL) (IN)  X-CONVERGENCE CRITERION.  IF STEP IS A NEWTON STEP
C             (V(STPPAR) = 0) HAVING V(RELDX) .LE. V(XCTOL) AND GIVING
C             AT MOST TWICE THE PREDICTED FUNCTION DECREASE, THEN
C            DA7SST RETURNS IV(IRC) = 7 OR 9.
C  V(XFTOL) (IN)  FALSE CONVERGENCE TOLERANCE.  IF STEP GAVE NO OR ONLY
C             A SMALL FUNCTION DECREASE AND V(RELDX) .LE. V(XFTOL),
C             THEN DA7SST RETURNS WITH IV(IRC) = 12.
C
C-------------------------------  NOTES  -------------------------------
C
C  ***  APPLICATION AND USAGE RESTRICTIONS  ***
C
C        THIS ROUTINE IS CALLED AS PART OF THE NL2SOL (NONLINEAR
C     LEAST-SQUARES) PACKAGE.  IT MAY BE USED IN ANY UNCONSTRAINED
C     MINIMIZATION SOLVER THAT USES DOGLEG, GOLDFELD-QUANDT-TROTTER,
C     OR LEVENBERG-MARQUARDT STEPS.
C
C  ***  ALGORITHM NOTES  ***
C
C        SEE (1) FOR FURTHER DISCUSSION OF THE ASSESSING AND MODEL
C     SWITCHING STRATEGIES.  WHILE NL2SOL CONSIDERS ONLY TWO MODELS,
C    DA7SST IS DESIGNED TO HANDLE ANY NUMBER OF MODELS.
C
C  ***  USAGE NOTES  ***
C
C        ON THE FIRST CALL OF AN ITERATION, ONLY THE I/O VARIABLES
C     STEP, X, IV(IRC), IV(MODEL), V(F), V(DSTNRM), V(GTSTEP), AND
C     V(PREDUC) NEED HAVE BEEN INITIALIZED.  BETWEEN CALLS, NO I/O
C     VALUES EXCEPT STEP, X, IV(MODEL), V(F) AND THE STOPPING TOLER-
C     ANCES SHOULD BE CHANGED.
C        AFTER A RETURN FOR CONVERGENCE OR FALSE CONVERGENCE, ONE CAN
C     CHANGE THE STOPPING TOLERANCES AND CALL DA7SST AGAIN, IN WHICH
C     CASE THE STOPPING TESTS WILL BE REPEATED.
C
C  ***  REFERENCES  ***
C
C     (1) DENNIS, J.E., JR., GAY, D.M., AND WELSCH, R.E. (1981),
C        AN ADAPTIVE NONLINEAR LEAST-SQUARES ALGORITHM,
C        ACM TRANS. MATH. SOFTWARE, VOL. 7, NO. 3.
C
C     (2) POWELL, M.J.D. (1970)  A FORTRAN SUBROUTINE FOR SOLVING
C        SYSTEMS OF NONLINEAR ALGEBRAIC EQUATIONS, IN NUMERICAL
C        METHODS FOR NONLINEAR ALGEBRAIC EQUATIONS, EDITED BY
C        P. RABINOWITZ, GORDON AND BREACH, LONDON.
C
C  ***  HISTORY  ***
C
C        JOHN DENNIS DESIGNED MUCH OF THIS ROUTINE, STARTING WITH
C     IDEAS IN (2). ROY WELSCH SUGGESTED THE MODEL SWITCHING STRATEGY.
C        DAVID GAY AND STEPHEN PETERS CAST THIS SUBROUTINE INTO A MORE
C     PORTABLE FORM (WINTER 1977), AND DAVID GAY CAST IT INTO ITS
C     PRESENT FORM (FALL 1978), WITH MINOR CHANGES TO THE SINGULAR
C     CONVERGENCE TEST IN MAY, 1984 (TO DEAL WITH FULL NEWTON STEPS).
C
C  ***  GENERAL  ***
C
C     THIS SUBROUTINE WAS WRITTEN IN CONNECTION WITH RESEARCH
C     SUPPORTED BY THE NATIONAL SCIENCE FOUNDATION UNDER GRANTS
C     MCS-7600324, DCR75-10143, 76-14311DSS, MCS76-11989, AND
C     MCS-7906671.
C
C------------------------  EXTERNAL QUANTITIES  ------------------------
C
C  ***  NO EXTERNAL FUNCTIONS AND SUBROUTINES  ***
C
C--------------------------  LOCAL VARIABLES  --------------------------
C
      LOGICAL GOODX
      INTEGER I, NFC
      DOUBLE PRECISION EMAX, EMAXS, GTS, RFAC1, XMAX
      DOUBLE PRECISION HALF, ONE, ONEP2, TWO, ZERO
C
C  ***  SUBSCRIPTS FOR IV AND V  ***
C
      INTEGER AFCTOL, DECFAC, DSTNRM, DSTSAV, DST0, F, FDIF, FLSTGD, F0,
     1        GTSLST, GTSTEP, INCFAC, IRC, LMAXS, MLSTGD, MODEL, NFCALL,
     2        NFGCAL, NREDUC, PLSTGD, PREDUC, RADFAC, RADINC, RDFCMN,
     3        RDFCMX, RELDX, RESTOR, RFCTOL, SCTOL, STAGE, STGLIM,
     4        STPPAR, SWITCH, TOOBIG, TUNER1, TUNER2, TUNER3, XCTOL,
     5        XFTOL, XIRC
C
C  ***  DATA INITIALIZATIONS  ***
C
      PARAMETER (HALF=0.5D+0, ONE=1.D+0, ONEP2=1.2D+0, TWO=2.D+0,
     1           ZERO=0.D+0)
C
      PARAMETER (IRC=29, MLSTGD=32, MODEL=5, NFCALL=6, NFGCAL=7,
     1           RADINC=8, RESTOR=9, STAGE=10, STGLIM=11, SWITCH=12,
     2           TOOBIG=2, XIRC=13)
      PARAMETER (AFCTOL=31, DECFAC=22, DSTNRM=2, DST0=3, DSTSAV=18,
     1           F=10, FDIF=11, FLSTGD=12, F0=13, GTSLST=14, GTSTEP=4,
     2           INCFAC=23, LMAXS=36, NREDUC=6, PLSTGD=15, PREDUC=7,
     3           RADFAC=16, RDFCMN=24, RDFCMX=25, RELDX=17, RFCTOL=32,
     4           SCTOL=37, STPPAR=5, TUNER1=26, TUNER2=27, TUNER3=28,
     5           XCTOL=33, XFTOL=34)
C
C+++++++++++++++++++++++++++++++  BODY  ++++++++++++++++++++++++++++++++
C
      NFC = IV(NFCALL)
      IV(SWITCH) = 0
      IV(RESTOR) = 0
      RFAC1 = ONE
      GOODX = .TRUE.
      I = IV(IRC)
      IF (I .GE. 1 .AND. I .LE. 12)
     1             GO TO (20,30,10,10,40,280,220,220,220,220,220,170), I
       IV(IRC) = 13
       GO TO 999
C
C  ***  INITIALIZE FOR NEW ITERATION  ***
C
 10   IV(STAGE) = 1
      IV(RADINC) = 0
      V(FLSTGD) = V(F0)
      IF (IV(TOOBIG) .EQ. 0) GO TO 110
       IV(STAGE) = -1
       IV(XIRC) = I
       GO TO 60
C
C  ***  STEP WAS RECOMPUTED WITH NEW MODEL OR SMALLER RADIUS  ***
C  ***  FIRST DECIDE WHICH  ***
C
 20   IF (IV(MODEL) .NE. IV(MLSTGD)) GO TO 30
C        ***  OLD MODEL RETAINED, SMALLER RADIUS TRIED  ***
C        ***  DO NOT CONSIDER ANY MORE NEW MODELS THIS ITERATION  ***
       IV(STAGE) = IV(STGLIM)
       IV(RADINC) = -1
       GO TO 110
C
C  ***  A NEW MODEL IS BEING TRIED.  DECIDE WHETHER TO KEEP IT.  ***
C
 30   IV(STAGE) = IV(STAGE) + 1
C
C     ***  NOW WE ADD THE POSSIBILITY THAT STEP WAS RECOMPUTED WITH  ***
C     ***  THE SAME MODEL, PERHAPS BECAUSE OF AN OVERSIZED STEP.     ***
C
 40   IF (IV(STAGE) .GT. 0) GO TO 50
C
C        ***  STEP WAS RECOMPUTED BECAUSE IT WAS TOO BIG.  ***
C
       IF (IV(TOOBIG) .NE. 0) GO TO 60
C
C        ***  RESTORE IV(STAGE) AND PICK UP WHERE WE LEFT OFF.  ***
C
       IV(STAGE) = -IV(STAGE)
       I = IV(XIRC)
       GO TO (20, 30, 110, 110, 70), I
C
 50   IF (IV(TOOBIG) .EQ. 0) GO TO 70
C
C  ***  HANDLE OVERSIZE STEP  ***
C
      IV(TOOBIG) = 0
      IF (IV(RADINC) .GT. 0) GO TO 80
       IV(STAGE) = -IV(STAGE)
       IV(XIRC) = IV(IRC)
C
 60      IV(TOOBIG) = 0
       V(RADFAC) = V(DECFAC)
       IV(RADINC) = IV(RADINC) - 1
       IV(IRC) = 5
       IV(RESTOR) = 1
       V(F) = V(FLSTGD)
       GO TO 999
C
 70   IF (V(F) .LT. V(FLSTGD)) GO TO 110
C
C     *** THE NEW STEP IS A LOSER.  RESTORE OLD MODEL.  ***
C
      IF (IV(MODEL) .EQ. IV(MLSTGD)) GO TO 80
       IV(MODEL) = IV(MLSTGD)
       IV(SWITCH) = 1
C
C     ***  RESTORE STEP, ETC. ONLY IF A PREVIOUS STEP DECREASED V(F).
C
 80   IF (V(FLSTGD) .GE. V(F0)) GO TO 110
       IF (IV(STAGE) .LT. IV(STGLIM)) THEN
          GOODX = .FALSE.
       ELSE IF (NFC .LT. IV(NFGCAL) + IV(STGLIM) + 2) THEN
          GOODX = .FALSE.
       ELSE IF (IV(SWITCH) .NE. 0) THEN
          GOODX = .FALSE.
          ENDIF
       IV(RESTOR) = 3
       V(F) = V(FLSTGD)
       V(PREDUC) = V(PLSTGD)
       V(GTSTEP) = V(GTSLST)
       IF (IV(SWITCH) .EQ. 0) RFAC1 = V(DSTNRM) / V(DSTSAV)
       V(DSTNRM) = V(DSTSAV)
       IF (GOODX) THEN
C
C     ***  ACCEPT PREVIOUS SLIGHTLY REDUCING STEP ***
C
          V(FDIF) = V(F0) - V(F)
          IV(IRC) = 4
          V(RADFAC) = RFAC1
          GO TO 999
          ENDIF
       NFC = IV(NFGCAL)
C
 110  V(FDIF) = V(F0) - V(F)
      IF (V(FDIF) .GT. V(TUNER2) * V(PREDUC)) GO TO 140
      IF (IV(RADINC) .GT. 0) GO TO 140
C
C        ***  NO (OR ONLY A TRIVIAL) FUNCTION DECREASE
C        ***  -- SO TRY NEW MODEL OR SMALLER RADIUS
C
       IF (V(F) .LT. V(F0)) GO TO 120
            IV(MLSTGD) = IV(MODEL)
            V(FLSTGD) = V(F)
            V(F) = V(F0)
            IV(RESTOR) = 1
            GO TO 130
 120     IV(NFGCAL) = NFC
 130     IV(IRC) = 1
       IF (IV(STAGE) .LT. IV(STGLIM)) GO TO 160
            IV(IRC) = 5
            IV(RADINC) = IV(RADINC) - 1
            GO TO 160
C
C  ***  NONTRIVIAL FUNCTION DECREASE ACHIEVED  ***
C
 140  IV(NFGCAL) = NFC
      RFAC1 = ONE
      V(DSTSAV) = V(DSTNRM)
      IF (V(FDIF) .GT. V(PREDUC)*V(TUNER1)) GO TO 190
C
C  ***  DECREASE WAS MUCH LESS THAN PREDICTED -- EITHER CHANGE MODELS
C  ***  OR ACCEPT STEP WITH DECREASED RADIUS.
C
      IF (IV(STAGE) .GE. IV(STGLIM)) GO TO 150
C        ***  CONSIDER SWITCHING MODELS  ***
       IV(IRC) = 2
       GO TO 160
C
C     ***  ACCEPT STEP WITH DECREASED RADIUS  ***
C
 150  IV(IRC) = 4
C
C  ***  SET V(RADFAC) TO FLETCHER*S DECREASE FACTOR  ***
C
 160  IV(XIRC) = IV(IRC)
      EMAX = V(GTSTEP) + V(FDIF)
      V(RADFAC) = HALF * RFAC1
      IF (EMAX .LT. V(GTSTEP)) V(RADFAC) = RFAC1 * DMAX1(V(RDFCMN),
     1                                           HALF * V(GTSTEP)/EMAX)
C
C  ***  DO FALSE CONVERGENCE TEST  ***
C
 170  IF (V(RELDX) .LE. V(XFTOL)) GO TO 180
       IV(IRC) = IV(XIRC)
       IF (V(F) .LT. V(F0)) GO TO 200
            GO TO 230
C
 180  IV(IRC) = 12
      GO TO 240
C
C  ***  HANDLE GOOD FUNCTION DECREASE  ***
C
 190  IF (V(FDIF) .LT. (-V(TUNER3) * V(GTSTEP))) GO TO 210
C
C     ***  INCREASING RADIUS LOOKS WORTHWHILE.  SEE IF WE JUST
C     ***  RECOMPUTED STEP WITH A DECREASED RADIUS OR RESTORED STEP
C     ***  AFTER RECOMPUTING IT WITH A LARGER RADIUS.
C
      IF (IV(RADINC) .LT. 0) GO TO 210
      IF (IV(RESTOR) .EQ. 1) GO TO 210
      IF (IV(RESTOR) .EQ. 3) GO TO 210
C
C        ***  WE DID NOT.  TRY A LONGER STEP UNLESS THIS WAS A NEWTON
C        ***  STEP.
C
       V(RADFAC) = V(RDFCMX)
       GTS = V(GTSTEP)
       IF (V(FDIF) .LT. (HALF/V(RADFAC) - ONE) * GTS)
     1            V(RADFAC) = DMAX1(V(INCFAC), HALF*GTS/(GTS + V(FDIF)))
       IV(IRC) = 4
       IF (V(STPPAR) .EQ. ZERO) GO TO 230
       IF (V(DST0) .GE. ZERO .AND. (V(DST0) .LT. TWO*V(DSTNRM)
     1             .OR. V(NREDUC) .LT. ONEP2*V(FDIF)))  GO TO 230
C             ***  STEP WAS NOT A NEWTON STEP.  RECOMPUTE IT WITH
C             ***  A LARGER RADIUS.
            IV(IRC) = 5
            IV(RADINC) = IV(RADINC) + 1
C
C  ***  SAVE VALUES CORRESPONDING TO GOOD STEP  ***
C
 200  V(FLSTGD) = V(F)
      IV(MLSTGD) = IV(MODEL)
      IF (IV(RESTOR) .EQ. 0) IV(RESTOR) = 2
      V(DSTSAV) = V(DSTNRM)
      IV(NFGCAL) = NFC
      V(PLSTGD) = V(PREDUC)
      V(GTSLST) = V(GTSTEP)
      GO TO 230
C
C  ***  ACCEPT STEP WITH RADIUS UNCHANGED  ***
C
 210  V(RADFAC) = ONE
      IV(IRC) = 3
      GO TO 230
C
C  ***  COME HERE FOR A RESTART AFTER CONVERGENCE  ***
C
 220  IV(IRC) = IV(XIRC)
      IF (V(DSTSAV) .GE. ZERO) GO TO 240
       IV(IRC) = 12
       GO TO 240
C
C  ***  PERFORM CONVERGENCE TESTS  ***
C
 230  IV(XIRC) = IV(IRC)
 240  IF (IV(RESTOR) .EQ. 1 .AND. V(FLSTGD) .LT. V(F0)) IV(RESTOR) = 3
      IF (DABS(V(F)) .LT. V(AFCTOL)) IV(IRC) = 10
      IF (HALF * V(FDIF) .GT. V(PREDUC)) GO TO 999
      EMAX = V(RFCTOL) * DABS(V(F0))
      EMAXS = V(SCTOL) * DABS(V(F0))
      IF (V(PREDUC) .LE. EMAXS .AND. (V(DSTNRM) .GT. V(LMAXS) .OR.
     1     V(STPPAR) .EQ. ZERO)) IV(IRC) = 11
      IF (V(DST0) .LT. ZERO) GO TO 250
      I = 0
      IF ((V(NREDUC) .GT. ZERO .AND. V(NREDUC) .LE. EMAX) .OR.
     1    (V(NREDUC) .EQ. ZERO. AND. V(PREDUC) .EQ. ZERO))  I = 2
      IF (V(STPPAR) .EQ. ZERO .AND. V(RELDX) .LE. V(XCTOL)
     1                        .AND. GOODX)                  I = I + 1
      IF (I .GT. 0) IV(IRC) = I + 6
C
C  ***  CONSIDER RECOMPUTING STEP OF LENGTH V(LMAXS) FOR SINGULAR
C  ***  CONVERGENCE TEST.
C
 250  IF (IV(IRC) .GT. 5 .AND. IV(IRC) .NE. 12) GO TO 999
      IF (V(STPPAR) .EQ. ZERO) GO TO 999
      IF (V(DSTNRM) .GT. V(LMAXS)) GO TO 260
       IF (V(PREDUC) .GE. EMAXS) GO TO 999
            IF (V(DST0) .LE. ZERO) GO TO 270
               IF (HALF * V(DST0) .LE. V(LMAXS)) GO TO 999
                  GO TO 270
 260  IF (HALF * V(DSTNRM) .LE. V(LMAXS)) GO TO 999
      XMAX = V(LMAXS) / V(DSTNRM)
      IF (XMAX * (TWO - XMAX) * V(PREDUC) .GE. EMAXS) GO TO 999
 270  IF (V(NREDUC) .LT. ZERO) GO TO 290
C
C  ***  RECOMPUTE V(PREDUC) FOR USE IN SINGULAR CONVERGENCE TEST  ***
C
      V(GTSLST) = V(GTSTEP)
      V(DSTSAV) = V(DSTNRM)
      IF (IV(IRC) .EQ. 12) V(DSTSAV) = -V(DSTSAV)
      V(PLSTGD) = V(PREDUC)
      I = IV(RESTOR)
      IV(RESTOR) = 2
      IF (I .EQ. 3) IV(RESTOR) = 0
      IV(IRC) = 6
      GO TO 999
C
C  ***  PERFORM SINGULAR CONVERGENCE TEST WITH RECOMPUTED V(PREDUC)  ***
C
 280  V(GTSTEP) = V(GTSLST)
      V(DSTNRM) = DABS(V(DSTSAV))
      IV(IRC) = IV(XIRC)
      IF (V(DSTSAV) .LE. ZERO) IV(IRC) = 12
      V(NREDUC) = -V(PREDUC)
      V(PREDUC) = V(PLSTGD)
      IV(RESTOR) = 3
 290  IF (-V(NREDUC) .LE. V(SCTOL) * DABS(V(F0))) IV(IRC) = 11
C
 999  RETURN
C
C  ***  LAST LINE OF DA7SST FOLLOWS  ***
      END
      SUBROUTINE I7SHFT(N, K, X)
C
C  ***  SHIFT X(K),...,X(N) LEFT CIRCULARLY ONE POSITION IF K .GT. 0.
C  ***  SHIFT X(-K),...,X(N) RIGHT CIRCULARLY ONE POSITION IF K .LT. 0.
C
      INTEGER N, K
      INTEGER X(N)
C
      INTEGER I, II, K1, NM1, T
C
      IF (K .LT. 0) GO TO 20
      IF (K .GE. N) GO TO 999
      NM1 = N - 1
      T = X(K)
      DO 10 I = K, NM1
 10      X(I) = X(I+1)
      X(N) = T
      GO TO 999
C
 20   K1 = -K
      IF (K1 .GE. N) GO TO 999
      T = X(N)
      NM1 = N - K1
      DO 30 II = 1, NM1
       I = N - II
       X(I+1) = X(I)
 30      CONTINUE
      X(K1) = T
 999  RETURN
C  ***  LAST LINE OF I7SHFT FOLLOWS  ***
      END
      SUBROUTINE S7ETR(M,N,INDROW,JPNTR,INDCOL,IPNTR,IWA)
      INTEGER M,N
      INTEGER INDROW(1),JPNTR(1),INDCOL(1),IPNTR(1),IWA(M)
C     **********
C
C     SUBROUTINE S7ETR
C
C     GIVEN A COLUMN-ORIENTED DEFINITION OF THE SPARSITY PATTERN
C     OF AN M BY N MATRIX A, THIS SUBROUTINE DETERMINES A
C     ROW-ORIENTED DEFINITION OF THE SPARSITY PATTERN OF A.
C
C     ON INPUT THE COLUMN-ORIENTED DEFINITION IS SPECIFIED BY
C     THE ARRAYS INDROW AND JPNTR. ON OUTPUT THE ROW-ORIENTED
C     DEFINITION IS SPECIFIED BY THE ARRAYS INDCOL AND IPNTR.
C
C     THE SUBROUTINE STATEMENT IS
C
C       SUBROUTINE S7ETR(M,N,INDROW,JPNTR,INDCOL,IPNTR,IWA)
C
C     WHERE
C
C       M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C         OF ROWS OF A.
C
C       N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C         OF COLUMNS OF A.
C
C       INDROW IS AN INTEGER INPUT ARRAY WHICH CONTAINS THE ROW
C         INDICES FOR THE NON-ZEROES IN THE MATRIX A.
C
C       JPNTR IS AN INTEGER INPUT ARRAY OF LENGTH N + 1 WHICH
C         SPECIFIES THE LOCATIONS OF THE ROW INDICES IN INDROW.
C         THE ROW INDICES FOR COLUMN J ARE
C
C               INDROW(K), K = JPNTR(J),...,JPNTR(J+1)-1.
C
C         NOTE THAT JPNTR(N+1)-1 IS THEN THE NUMBER OF NON-ZERO
C         ELEMENTS OF THE MATRIX A.
C
C       INDCOL IS AN INTEGER OUTPUT ARRAY WHICH CONTAINS THE
C         COLUMN INDICES FOR THE NON-ZEROES IN THE MATRIX A.
C
C       IPNTR IS AN INTEGER OUTPUT ARRAY OF LENGTH M + 1 WHICH
C         SPECIFIES THE LOCATIONS OF THE COLUMN INDICES IN INDCOL.
C         THE COLUMN INDICES FOR ROW I ARE
C
C               INDCOL(K), K = IPNTR(I),...,IPNTR(I+1)-1.
C
C         NOTE THAT IPNTR(1) IS SET TO 1 AND THAT IPNTR(M+1)-1 IS
C         THEN THE NUMBER OF NON-ZERO ELEMENTS OF THE MATRIX A.
C
C       IWA IS AN INTEGER WORK ARRAY OF LENGTH M.
C
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. JUNE 1982.
C     THOMAS F. COLEMAN, BURTON S. GARBOW, JORGE J. MORE
C
C     **********
      INTEGER IR,JCOL,JP,JPL,JPU,L,NNZ
C
C     DETERMINE THE NUMBER OF NON-ZEROES IN THE ROWS.
C
      DO 10 IR = 1, M
       IWA(IR) = 0
   10    CONTINUE
      NNZ = JPNTR(N+1) - 1
      DO 20 JP = 1, NNZ
       IR = INDROW(JP)
       IWA(IR) = IWA(IR) + 1
   20    CONTINUE
C
C     SET POINTERS TO THE START OF THE ROWS IN INDCOL.
C
      IPNTR(1) = 1
      DO 30 IR = 1, M
       IPNTR(IR+1) = IPNTR(IR) + IWA(IR)
       IWA(IR) = IPNTR(IR)
   30    CONTINUE
C
C     FILL INDCOL.
C
      DO 60 JCOL = 1, N
       JPL = JPNTR(JCOL)
       JPU = JPNTR(JCOL+1) - 1
       IF (JPU .LT. JPL) GO TO 50
       DO 40 JP = JPL, JPU
          IR = INDROW(JP)
          L = IWA(IR)
          INDCOL(L) = JCOL
          IWA(IR) = IWA(IR) + 1
   40       CONTINUE
   50    CONTINUE
   60    CONTINUE
      RETURN
C
C     LAST CARD OF SUBROUTINE S7ETR.
C
      END
      SUBROUTINE DG7QSB(B, D, DIHDI, G, IPIV, IPIV1, IPIV2, KA, L, LV,
     1                  P, P0, PC, STEP, TD, TG, V, W, X, X0)
C
C  ***  COMPUTE HEURISTIC BOUNDED NEWTON STEP  ***
C
      INTEGER KA, LV, P, P0, PC
      INTEGER IPIV(P), IPIV1(P), IPIV2(P)
      DOUBLE PRECISION B(2,P), D(P), DIHDI(1), G(P), L(1),
     1                 STEP(P,2), TD(P), TG(P), V(LV), W(P), X0(P), X(P)
C     DIMENSION DIHDI(P*(P+1)/2), L(P*(P+1)/2)
C
      DOUBLE PRECISION DD7TPR
      EXTERNAL DD7TPR,DG7QTS, DS7BQN, DS7IPR,DV7CPY, DV7IPR,
     1         DV7SCP, DV7VMP
C
C  ***  LOCAL VARIABLES  ***
C
      INTEGER K, KB, KINIT, NS, P1, P10
      DOUBLE PRECISION DS0, NRED, PRED, RAD
      DOUBLE PRECISION ZERO
C
C  ***  V SUBSCRIPTS  ***
C
      INTEGER DST0, DSTNRM, GTSTEP, NREDUC, PREDUC, RADIUS
C
      PARAMETER (DST0=3, DSTNRM=2, GTSTEP=4, NREDUC=6, PREDUC=7,
     1           RADIUS=8)
      DATA ZERO/0.D+0/
C
C+++++++++++++++++++++++++++++++  BODY  ++++++++++++++++++++++++++++++++
C
      P1 = PC
      IF (KA .LT. 0) GO TO 10
       NRED = V(NREDUC)
       DS0 = V(DST0)
       GO TO 20
 10   P0 = 0
      KA = -1
C
 20   KINIT = -1
      IF (P0 .EQ. P1) KINIT = KA
      CALL DV7CPY(P, X, X0)
      PRED = ZERO
      RAD = V(RADIUS)
      KB = -1
      V(DSTNRM) = ZERO
      IF (P1 .GT. 0) GO TO 30
       NRED = ZERO
       DS0 = ZERO
       CALL DV7SCP(P, STEP, ZERO)
       GO TO 60
C
 30   CALL DV7CPY(P, TD, D)
      CALL DV7IPR(P, IPIV, TD)
      CALL DV7VMP(P, TG, G, D, -1)
      CALL DV7IPR(P, IPIV, TG)
 40   K = KINIT
      KINIT = -1
      V(RADIUS) = RAD - V(DSTNRM)
      CALL DG7QTS(TD, TG, DIHDI, K, L, P1, STEP, V, W)
      P0 = P1
      IF (KA .GE. 0) GO TO 50
       NRED = V(NREDUC)
       DS0 = V(DST0)
C
 50   KA = K
      V(RADIUS) = RAD
      P10 = P1
      CALL DS7BQN(B, D, STEP(1,2), IPIV, IPIV1, IPIV2, KB, L, LV,
     1            NS, P, P1, STEP, TD, TG, V, W, X, X0)
      IF (NS .GT. 0) CALL DS7IPR(P10, IPIV1, DIHDI)
      PRED = PRED + V(PREDUC)
      IF (NS .NE. 0) P0 = 0
      IF (KB .LE. 0) GO TO 40
C
 60   V(DST0) = DS0
      V(NREDUC) = NRED
      V(PREDUC) = PRED
      V(GTSTEP) = DD7TPR(P, G, STEP)
C
      RETURN
C  ***  LAST LINE OF DG7QSB FOLLOWS  ***
      END
      DOUBLE PRECISION FUNCTION DL7SVX(P, L, X, Y)
C
C  ***  ESTIMATE LARGEST SING. VALUE OF PACKED LOWER TRIANG. MATRIX L
C
C  ***  PARAMETER DECLARATIONS  ***
C
      INTEGER P
      DOUBLE PRECISION L(1), X(P), Y(P)
C     DIMENSION L(P*(P+1)/2)
C
C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
C
C  ***  PURPOSE  ***
C
C     THIS FUNCTION RETURNS A GOOD UNDER-ESTIMATE OF THE LARGEST
C     SINGULAR VALUE OF THE PACKED LOWER TRIANGULAR MATRIX L.
C
C  ***  PARAMETER DESCRIPTION  ***
C
C  P (IN)  = THE ORDER OF L.  L IS A  P X P  LOWER TRIANGULAR MATRIX.
C  L (IN)  = ARRAY HOLDING THE ELEMENTS OF  L  IN ROW ORDER, I.E.
C             L(1,1), L(2,1), L(2,2), L(3,1), L(3,2), L(3,3), ETC.
C  X (OUT) IF DL7SVX RETURNS A POSITIVE VALUE, THEN X = (L**T)*Y IS AN
C             (UNNORMALIZED) APPROXIMATE RIGHT SINGULAR VECTOR
C             CORRESPONDING TO THE LARGEST SINGULAR VALUE.  THIS
C             APPROXIMATION MAY BE CRUDE.
C  Y (OUT) IF DL7SVX RETURNS A POSITIVE VALUE, THEN Y = L*X IS A
C             NORMALIZED APPROXIMATE LEFT SINGULAR VECTOR CORRESPOND-
C             ING TO THE LARGEST SINGULAR VALUE.  THIS APPROXIMATION
C             MAY BE VERY CRUDE.  THE CALLER MAY PASS THE SAME VECTOR
C             FOR X AND Y (NONSTANDARD FORTRAN USAGE), IN WHICH CASE X
C             OVER-WRITES Y.
C
C  ***  ALGORITHM NOTES  ***
C
C     THE ALGORITHM IS BASED ON ANALOGY WITH (1).  IT USES A
C     RANDOM NUMBER GENERATOR PROPOSED IN (4), WHICH PASSES THE
C     SPECTRAL TEST WITH FLYING COLORS -- SEE (2) AND (3).
C
C  ***  SUBROUTINES AND FUNCTIONS CALLED  ***
C
C        DV2NRM - FUNCTION, RETURNS THE 2-NORM OF A VECTOR.
C
C  ***  REFERENCES  ***
C
C     (1) CLINE, A., MOLER, C., STEWART, G., AND WILKINSON, J.H.(1977),
C         AN ESTIMATE FOR THE CONDITION NUMBER OF A MATRIX, REPORT
C         TM-310, APPLIED MATH. DIV., ARGONNE NATIONAL LABORATORY.
C
C     (2) HOAGLIN, D.C. (1976), THEORETICAL PROPERTIES OF CONGRUENTIAL
C         RANDOM-NUMBER GENERATORS --  AN EMPIRICAL VIEW,
C         MEMORANDUM NS-340, DEPT. OF STATISTICS, HARVARD UNIV.
C
C     (3) KNUTH, D.E. (1969), THE ART OF COMPUTER PROGRAMMING, VOL. 2
C         (SEMINUMERICAL ALGORITHMS), ADDISON-WESLEY, READING, MASS.
C
C     (4) SMITH, C.S. (1971), MULTIPLICATIVE PSEUDO-RANDOM NUMBER
C         GENERATORS WITH PRIME MODULUS, J. ASSOC. COMPUT. MACH. 18,
C         PP. 586-593.
C
C  ***  HISTORY  ***
C
C     DESIGNED AND CODED BY DAVID M. GAY (WINTER 1977/SUMMER 1978).
C
C  ***  GENERAL  ***
C
C     THIS SUBROUTINE WAS WRITTEN IN CONNECTION WITH RESEARCH
C     SUPPORTED BY THE NATIONAL SCIENCE FOUNDATION UNDER GRANTS
C     MCS-7600324, DCR75-10143, 76-14311DSS, AND MCS76-11989.
C
C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
C
C  ***  LOCAL VARIABLES  ***
C
      INTEGER I, IX, J, JI, JJ, JJJ, JM1, J0, PM1, PPLUS1
      DOUBLE PRECISION B, BLJI, SMINUS, SPLUS, T, YI
C
C  ***  CONSTANTS  ***
C
      DOUBLE PRECISION HALF, ONE, R9973, ZERO
C
C  ***  EXTERNAL FUNCTIONS AND SUBROUTINES  ***
C
      DOUBLE PRECISION DD7TPR, DV2NRM
      EXTERNAL DD7TPR, DV2NRM,DV2AXY
C
      PARAMETER (HALF=0.5D+0, ONE=1.D+0, R9973=9973.D+0, ZERO=0.D+0)
C
C  ***  BODY  ***
C
      IX = 2
      PPLUS1 = P + 1
      PM1 = P - 1
C
C  ***  FIRST INITIALIZE X TO PARTIAL SUMS  ***
C
      J0 = P*PM1/2
      JJ = J0 + P
      IX = MOD(3432*IX, 9973)
      B = HALF*(ONE + DBLE(IX)/R9973)
      X(P) = B * L(JJ)
      IF (P .LE. 1) GO TO 40
      DO 10 I = 1, PM1
       JI = J0 + I
       X(I) = B * L(JI)
 10      CONTINUE
C
C  ***  COMPUTE X = (L**T)*B, WHERE THE COMPONENTS OF B HAVE RANDOMLY
C  ***  CHOSEN MAGNITUDES IN (.5,1) WITH SIGNS CHOSEN TO MAKE X LARGE.
C
C     DO J = P-1 TO 1 BY -1...
      DO 30 JJJ = 1, PM1
       J = P - JJJ
C       ***  DETERMINE X(J) IN THIS ITERATION. NOTE FOR I = 1,2,...,J
C       ***  THAT X(I) HOLDS THE CURRENT PARTIAL SUM FOR ROW I.
       IX = MOD(3432*IX, 9973)
       B = HALF*(ONE + DBLE(IX)/R9973)
       JM1 = J - 1
       J0 = J*JM1/2
       SPLUS = ZERO
       SMINUS = ZERO
       DO 20 I = 1, J
            JI = J0 + I
            BLJI = B * L(JI)
            SPLUS = SPLUS + DABS(BLJI + X(I))
            SMINUS = SMINUS + DABS(BLJI - X(I))
 20           CONTINUE
       IF (SMINUS .GT. SPLUS) B = -B
       X(J) = ZERO
C        ***  UPDATE PARTIAL SUMS  ***
       CALL DV2AXY(J, X, B, L(J0+1), X)
 30      CONTINUE
C
C  ***  NORMALIZE X  ***
C
 40   T = DV2NRM(P, X)
      IF (T .LE. ZERO) GO TO 80
      T = ONE / T
      DO 50 I = 1, P
 50      X(I) = T*X(I)
C
C  ***  COMPUTE L*X = Y AND RETURN SVMAX = TWONORM(Y)  ***
C
      DO 60 JJJ = 1, P
       J = PPLUS1 - JJJ
       JI = J*(J-1)/2 + 1
       Y(J) = DD7TPR(J, L(JI), X)
 60      CONTINUE
C
C  ***  NORMALIZE Y AND SET X = (L**T)*Y  ***
C
      T = ONE / DV2NRM(P, Y)
      JI = 1
      DO 70 I = 1, P
       YI = T * Y(I)
       X(I) = ZERO
       CALL DV2AXY(I, X, YI, L(JI), X)
       JI = JI + I
 70      CONTINUE
      DL7SVX = DV2NRM(P, X)
      GO TO 999
C
 80   DL7SVX = ZERO
C
 999  RETURN
C  ***  LAST CARD OF DL7SVX FOLLOWS  ***
      END
      SUBROUTINE DD7DUP(D, HDIAG, IV, LIV, LV, N, V)
C
C  ***  UPDATE SCALE VECTOR D FOR  DMNH  ***
C
C  ***  PARAMETER DECLARATIONS  ***
C
      INTEGER LIV, LV, N
      INTEGER IV(LIV)
      DOUBLE PRECISION D(N), HDIAG(N), V(LV)
C
C  ***  LOCAL VARIABLES  ***
C
      INTEGER DTOLI, D0I, I
      DOUBLE PRECISION T, VDFAC
C
C  ***  INTRINSIC FUNCTIONS  ***
C/+
      DOUBLE PRECISION DSQRT
C/
C  ***  SUBSCRIPTS FOR IV AND V  ***
C
      INTEGER DFAC, DTOL, DTYPE, NITER
      PARAMETER (DFAC=41, DTOL=59, DTYPE=16, NITER=31)
C
C-------------------------------  BODY  --------------------------------
C
      I = IV(DTYPE)
      IF (I .EQ. 1) GO TO 10
       IF (IV(NITER) .GT. 0) GO TO 999
C
 10   DTOLI = IV(DTOL)
      D0I = DTOLI + N
      VDFAC = V(DFAC)
      DO 20 I = 1, N
       T = DMAX1(DSQRT(DABS(HDIAG(I))), VDFAC*D(I))
       IF (T .LT. V(DTOLI)) T = DMAX1(V(DTOLI), V(D0I))
       D(I) = T
       DTOLI = DTOLI + 1
       D0I = D0I + 1
 20      CONTINUE
C
 999  RETURN
C  ***  LAST CARD OF DD7DUP FOLLOWS  ***
      END
      SUBROUTINE S7RTDT(N,NNZ,INDROW,INDCOL,JPNTR,IWA)
      INTEGER N,NNZ
      INTEGER INDROW(NNZ),INDCOL(NNZ),JPNTR(1),IWA(N)
C     **********
C
C     SUBROUTINE S7RTDT
C
C     GIVEN THE NON-ZERO ELEMENTS OF AN M BY N MATRIX A IN
C     ARBITRARY ORDER AS SPECIFIED BY THEIR ROW AND COLUMN
C     INDICES, THIS SUBROUTINE PERMUTES THESE ELEMENTS SO
C     THAT THEIR COLUMN INDICES ARE IN NON-DECREASING ORDER.
C
C     ON INPUT IT IS ASSUMED THAT THE ELEMENTS ARE SPECIFIED IN
C
C           INDROW(K),INDCOL(K), K = 1,...,NNZ.
C
C     ON OUTPUT THE ELEMENTS ARE PERMUTED SO THAT INDCOL IS
C     IN NON-DECREASING ORDER. IN ADDITION, THE ARRAY JPNTR
C     IS SET SO THAT THE ROW INDICES FOR COLUMN J ARE
C
C           INDROW(K), K = JPNTR(J),...,JPNTR(J+1)-1.
C
C     NOTE THAT THE VALUE OF M IS NOT NEEDED BY S7RTDT AND IS
C     THEREFORE NOT PRESENT IN THE SUBROUTINE STATEMENT.
C
C     THE SUBROUTINE STATEMENT IS
C
C       SUBROUTINE S7RTDT(N,NNZ,INDROW,INDCOL,JPNTR,IWA)
C
C     WHERE
C
C       N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C         OF COLUMNS OF A.
C
C       NNZ IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C         OF NON-ZERO ELEMENTS OF A.
C
C       INDROW IS AN INTEGER ARRAY OF LENGTH NNZ. ON INPUT INDROW
C         MUST CONTAIN THE ROW INDICES OF THE NON-ZERO ELEMENTS OF A.
C         ON OUTPUT INDROW IS PERMUTED SO THAT THE CORRESPONDING
C         COLUMN INDICES OF INDCOL ARE IN NON-DECREASING ORDER.
C
C       INDCOL IS AN INTEGER ARRAY OF LENGTH NNZ. ON INPUT INDCOL
C         MUST CONTAIN THE COLUMN INDICES OF THE NON-ZERO ELEMENTS
C         OF A. ON OUTPUT INDCOL IS PERMUTED SO THAT THESE INDICES
C         ARE IN NON-DECREASING ORDER.
C
C       JPNTR IS AN INTEGER OUTPUT ARRAY OF LENGTH N + 1 WHICH
C         SPECIFIES THE LOCATIONS OF THE ROW INDICES IN THE OUTPUT
C         INDROW. THE ROW INDICES FOR COLUMN J ARE
C
C               INDROW(K), K = JPNTR(J),...,JPNTR(J+1)-1.
C
C         NOTE THAT JPNTR(1) IS SET TO 1 AND THAT JPNTR(N+1)-1
C         IS THEN NNZ.
C
C       IWA IS AN INTEGER WORK ARRAY OF LENGTH N.
C
C     SUBPROGRAMS CALLED
C
C       FORTRAN-SUPPLIED ... MAX0
C
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. JUNE 1982.
C     THOMAS F. COLEMAN, BURTON S. GARBOW, JORGE J. MORE
C
C     **********
      INTEGER I,J,K,L
C
C     DETERMINE THE NUMBER OF NON-ZEROES IN THE COLUMNS.
C
      DO 10 J = 1, N
       IWA(J) = 0
   10    CONTINUE
      DO 20 K = 1, NNZ
       J = INDCOL(K)
       IWA(J) = IWA(J) + 1
   20    CONTINUE
C
C     SET POINTERS TO THE START OF THE COLUMNS IN INDROW.
C
      JPNTR(1) = 1
      DO 30 J = 1, N
       JPNTR(J+1) = JPNTR(J) + IWA(J)
       IWA(J) = JPNTR(J)
   30    CONTINUE
      K = 1
C
C     BEGIN IN-PLACE SORT.
C
   40 CONTINUE
       J = INDCOL(K)
       IF (K .LT. JPNTR(J) .OR. K .GE. JPNTR(J+1)) GO TO 50
C
C           CURRENT ELEMENT IS IN POSITION. NOW EXAMINE THE
C           NEXT ELEMENT OR THE FIRST UN-SORTED ELEMENT IN
C           THE J-TH GROUP.
C
          K = MAX0(K+1,IWA(J))
          GO TO 60
   50    CONTINUE
C
C           CURRENT ELEMENT IS NOT IN POSITION. PLACE ELEMENT
C           IN POSITION AND MAKE THE DISPLACED ELEMENT THE
C           CURRENT ELEMENT.
C
          L = IWA(J)
          IWA(J) = IWA(J) + 1
          I = INDROW(K)
          INDROW(K) = INDROW(L)
          INDCOL(K) = INDCOL(L)
          INDROW(L) = I
          INDCOL(L) = J
   60    CONTINUE
       IF (K .LE. NNZ) GO TO 40
      RETURN
C
C     LAST CARD OF SUBROUTINE S7RTDT.
C
      END
      SUBROUTINE DL7SRT(N1, N, L, A, IRC)
C
C  ***  COMPUTE ROWS N1 THROUGH N OF THE CHOLESKY FACTOR  L  OF
C  ***  A = L*(L**T),  WHERE  L  AND THE LOWER TRIANGLE OF  A  ARE BOTH
C  ***  STORED COMPACTLY BY ROWS (AND MAY OCCUPY THE SAME STORAGE).
C  ***  IRC = 0 MEANS ALL WENT WELL.  IRC = J MEANS THE LEADING
C  ***  PRINCIPAL  J X J  SUBMATRIX OF  A  IS NOT POSITIVE DEFINITE --
C  ***  AND  L(J*(J+1)/2)  CONTAINS THE (NONPOS.) REDUCED J-TH DIAGONAL.
C
C  ***  PARAMETERS  ***
C
      INTEGER N1, N, IRC
      DOUBLE PRECISION L(1), A(1)
C     DIMENSION L(N*(N+1)/2), A(N*(N+1)/2)
C
C  ***  LOCAL VARIABLES  ***
C
      INTEGER I, IJ, IK, IM1, I0, J, JK, JM1, J0, K
      DOUBLE PRECISION T, TD, ZERO
C
C  ***  INTRINSIC FUNCTIONS  ***
C/+
      DOUBLE PRECISION DSQRT
C/
      PARAMETER (ZERO=0.D+0)
C
C  ***  BODY  ***
C
      I0 = N1 * (N1 - 1) / 2
      DO 50 I = N1, N
       TD = ZERO
       IF (I .EQ. 1) GO TO 40
       J0 = 0
       IM1 = I - 1
       DO 30 J = 1, IM1
            T = ZERO
            IF (J .EQ. 1) GO TO 20
            JM1 = J - 1
            DO 10 K = 1, JM1
               IK = I0 + K
               JK = J0 + K
               T = T + L(IK)*L(JK)
 10                CONTINUE
 20           IJ = I0 + J
            J0 = J0 + J
            T = (A(IJ) - T) / L(J0)
            L(IJ) = T
            TD = TD + T*T
 30           CONTINUE
 40      I0 = I0 + I
       T = A(I0) - TD
       IF (T .LE. ZERO) GO TO 60
       L(I0) = DSQRT(T)
 50      CONTINUE
C
      IRC = 0
      GO TO 999
C
 60   L(I0) = T
      IRC = I
C
 999  RETURN
C
C  ***  LAST CARD OF DL7SRT  ***
      END
      DOUBLE PRECISION FUNCTION DL7SVN(P, L, X, Y)
C
C  ***  ESTIMATE SMALLEST SING. VALUE OF PACKED LOWER TRIANG. MATRIX L
C
C  ***  PARAMETER DECLARATIONS  ***
C
      INTEGER P
      DOUBLE PRECISION L(1), X(P), Y(P)
C     DIMENSION L(P*(P+1)/2)
C
C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
C
C  ***  PURPOSE  ***
C
C     THIS FUNCTION RETURNS A GOOD OVER-ESTIMATE OF THE SMALLEST
C     SINGULAR VALUE OF THE PACKED LOWER TRIANGULAR MATRIX L.
C
C  ***  PARAMETER DESCRIPTION  ***
C
C  P (IN)  = THE ORDER OF L.  L IS A  P X P  LOWER TRIANGULAR MATRIX.
C  L (IN)  = ARRAY HOLDING THE ELEMENTS OF  L  IN ROW ORDER, I.E.
C             L(1,1), L(2,1), L(2,2), L(3,1), L(3,2), L(3,3), ETC.
C  X (OUT) IF DL7SVN RETURNS A POSITIVE VALUE, THEN X IS A NORMALIZED
C             APPROXIMATE LEFT SINGULAR VECTOR CORRESPONDING TO THE
C             SMALLEST SINGULAR VALUE.  THIS APPROXIMATION MAY BE VERY
C             CRUDE.  IF DL7SVN RETURNS ZERO, THEN SOME COMPONENTS OF X
C             ARE ZERO AND THE REST RETAIN THEIR INPUT VALUES.
C  Y (OUT) IF DL7SVN RETURNS A POSITIVE VALUE, THEN Y = (L**-1)*X IS AN
C             UNNORMALIZED APPROXIMATE RIGHT SINGULAR VECTOR CORRESPOND-
C             ING TO THE SMALLEST SINGULAR VALUE.  THIS APPROXIMATION
C             MAY BE CRUDE.  IF DL7SVN RETURNS ZERO, THEN Y RETAINS ITS
C             INPUT VALUE.  THE CALLER MAY PASS THE SAME VECTOR FOR X
C             AND Y (NONSTANDARD FORTRAN USAGE), IN WHICH CASE Y OVER-
C             WRITES X (FOR NONZERO DL7SVN RETURNS).
C
C  ***  ALGORITHM NOTES  ***
C
C     THE ALGORITHM IS BASED ON (1), WITH THE ADDITIONAL PROVISION THAT
C     DL7SVN = 0 IS RETURNED IF THE SMALLEST DIAGONAL ELEMENT OF L
C     (IN MAGNITUDE) IS NOT MORE THAN THE UNIT ROUNDOFF TIMES THE
C     LARGEST.  THE ALGORITHM USES A RANDOM NUMBER GENERATOR PROPOSED
C     IN (4), WHICH PASSES THE SPECTRAL TEST WITH FLYING COLORS -- SEE
C     (2) AND (3).
C
C  ***  SUBROUTINES AND FUNCTIONS CALLED  ***
C
C        DV2NRM - FUNCTION, RETURNS THE 2-NORM OF A VECTOR.
C
C  ***  REFERENCES  ***
C
C     (1) CLINE, A., MOLER, C., STEWART, G., AND WILKINSON, J.H.(1977),
C         AN ESTIMATE FOR THE CONDITION NUMBER OF A MATRIX, REPORT
C         TM-310, APPLIED MATH. DIV., ARGONNE NATIONAL LABORATORY.
C
C     (2) HOAGLIN, D.C. (1976), THEORETICAL PROPERTIES OF CONGRUENTIAL
C         RANDOM-NUMBER GENERATORS --  AN EMPIRICAL VIEW,
C         MEMORANDUM NS-340, DEPT. OF STATISTICS, HARVARD UNIV.
C
C     (3) KNUTH, D.E. (1969), THE ART OF COMPUTER PROGRAMMING, VOL. 2
C         (SEMINUMERICAL ALGORITHMS), ADDISON-WESLEY, READING, MASS.
C
C     (4) SMITH, C.S. (1971), MULTIPLICATIVE PSEUDO-RANDOM NUMBER
C         GENERATORS WITH PRIME MODULUS, J. ASSOC. COMPUT. MACH. 18,
C         PP. 586-593.
C
C  ***  HISTORY  ***
C
C     DESIGNED AND CODED BY DAVID M. GAY (WINTER 1977/SUMMER 1978).
C
C  ***  GENERAL  ***
C
C     THIS SUBROUTINE WAS WRITTEN IN CONNECTION WITH RESEARCH
C     SUPPORTED BY THE NATIONAL SCIENCE FOUNDATION UNDER GRANTS
C     MCS-7600324, DCR75-10143, 76-14311DSS, AND MCS76-11989.
C
C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
C
C  ***  LOCAL VARIABLES  ***
C
      INTEGER I, II, IX, J, JI, JJ, JJJ, JM1, J0, PM1
      DOUBLE PRECISION B, SMINUS, SPLUS, T, XMINUS, XPLUS
C
C  ***  CONSTANTS  ***
C
      DOUBLE PRECISION HALF, ONE, R9973, ZERO
C
C  ***  EXTERNAL FUNCTIONS AND SUBROUTINES  ***
C
      DOUBLE PRECISION DD7TPR, DV2NRM
      EXTERNAL DD7TPR, DV2NRM,DV2AXY
C
      PARAMETER (HALF=0.5D+0, ONE=1.D+0, R9973=9973.D+0, ZERO=0.D+0)
C
C  ***  BODY  ***
C
      IX = 2
      PM1 = P - 1
C
C  ***  FIRST CHECK WHETHER TO RETURN DL7SVN = 0 AND INITIALIZE X  ***
C
      II = 0
      J0 = P*PM1/2
      JJ = J0 + P
      IF (L(JJ) .EQ. ZERO) GO TO 110
      IX = MOD(3432*IX, 9973)
      B = HALF*(ONE + DBLE(IX)/R9973)
      XPLUS = B / L(JJ)
      X(P) = XPLUS
      IF (P .LE. 1) GO TO 60
      DO 10 I = 1, PM1
       II = II + I
       IF (L(II) .EQ. ZERO) GO TO 110
       JI = J0 + I
       X(I) = XPLUS * L(JI)
 10      CONTINUE
C
C  ***  SOLVE (L**T)*X = B, WHERE THE COMPONENTS OF B HAVE RANDOMLY
C  ***  CHOSEN MAGNITUDES IN (.5,1) WITH SIGNS CHOSEN TO MAKE X LARGE.
C
C     DO J = P-1 TO 1 BY -1...
      DO 50 JJJ = 1, PM1
       J = P - JJJ
C       ***  DETERMINE X(J) IN THIS ITERATION. NOTE FOR I = 1,2,...,J
C       ***  THAT X(I) HOLDS THE CURRENT PARTIAL SUM FOR ROW I.
       IX = MOD(3432*IX, 9973)
       B = HALF*(ONE + DBLE(IX)/R9973)
       XPLUS = (B - X(J))
       XMINUS = (-B - X(J))
       SPLUS = DABS(XPLUS)
       SMINUS = DABS(XMINUS)
       JM1 = J - 1
       J0 = J*JM1/2
       JJ = J0 + J
       XPLUS = XPLUS/L(JJ)
       XMINUS = XMINUS/L(JJ)
       IF (JM1 .EQ. 0) GO TO 30
       DO 20 I = 1, JM1
            JI = J0 + I
            SPLUS = SPLUS + DABS(X(I) + L(JI)*XPLUS)
            SMINUS = SMINUS + DABS(X(I) + L(JI)*XMINUS)
 20           CONTINUE
 30      IF (SMINUS .GT. SPLUS) XPLUS = XMINUS
       X(J) = XPLUS
C       ***  UPDATE PARTIAL SUMS  ***
       IF (JM1 .GT. 0) CALL DV2AXY(JM1, X, XPLUS, L(J0+1), X)
 50      CONTINUE
C
C  ***  NORMALIZE X  ***
C
 60   T = ONE/DV2NRM(P, X)
      DO 70 I = 1, P
 70      X(I) = T*X(I)
C
C  ***  SOLVE L*Y = X AND RETURN DL7SVN = 1/TWONORM(Y)  ***
C
      DO 100 J = 1, P
       JM1 = J - 1
       J0 = J*JM1/2
       JJ = J0 + J
       T = ZERO
       IF (JM1 .GT. 0) T = DD7TPR(JM1, L(J0+1), Y)
       Y(J) = (X(J) - T) / L(JJ)
 100     CONTINUE
C
      DL7SVN = ONE/DV2NRM(P, Y)
      GO TO 999
C
 110  DL7SVN = ZERO
 999  RETURN
C  ***  LAST CARD OF DL7SVN FOLLOWS  ***
      END
      SUBROUTINE DS7LVM(P, Y, S, X)
C
C  ***  SET  Y = S * X,  S = P X P SYMMETRIC MATRIX.  ***
C  ***  LOWER TRIANGLE OF  S  STORED ROWWISE.         ***
C
C  ***  PARAMETER DECLARATIONS  ***
C
      INTEGER P
      DOUBLE PRECISION S(1), X(P), Y(P)
C     DIMENSION S(P*(P+1)/2)
C
C  ***  LOCAL VARIABLES  ***
C
      INTEGER I, IM1, J, K
      DOUBLE PRECISION XI
C
C  ***  NO INTRINSIC FUNCTIONS  ***
C
C  ***  EXTERNAL FUNCTION  ***
C
      DOUBLE PRECISION DD7TPR
      EXTERNAL DD7TPR
C
C-----------------------------------------------------------------------
C
      J = 1
      DO 10 I = 1, P
       Y(I) = DD7TPR(I, S(J), X)
       J = J + I
 10      CONTINUE
C
      IF (P .LE. 1) GO TO 999
      J = 1
      DO 40 I = 2, P
       XI = X(I)
       IM1 = I - 1
       J = J + 1
       DO 30 K = 1, IM1
            Y(K) = Y(K) + S(J)*XI
            J = J + 1
 30           CONTINUE
 40      CONTINUE
C
 999  RETURN
C  ***  LAST CARD OF DS7LVM FOLLOWS  ***
      END
      DOUBLE PRECISION FUNCTION DH2RFG(A, B, X, Y, Z)
C
C  ***  DETERMINE X, Y, Z SO  I + (1,Z)**T * (X,Y)  IS A 2X2
C  ***  HOUSEHOLDER REFLECTION SENDING (A,B)**T INTO (C,0)**T,
C  ***  WHERE  C = -SIGN(A)*SQRT(A**2 + B**2)  IS THE VALUE DH2RFG
C  ***  RETURNS.
C
      DOUBLE PRECISION A, B, X, Y, Z
C
      DOUBLE PRECISION A1, B1, C, T
C/+
      DOUBLE PRECISION DSQRT
C/
      DOUBLE PRECISION ZERO
      DATA ZERO/0.D+0/
C
C  ***  BODY  ***
C
      IF (B .NE. ZERO) GO TO 10
       X = ZERO
       Y = ZERO
       Z = ZERO
       DH2RFG = A
       GO TO 999
 10   T = DABS(A) + DABS(B)
      A1 = A / T
      B1 = B / T
      C = DSQRT(A1**2 + B1**2)
      IF (A1 .GT. ZERO) C = -C
      A1 = A1 - C
      Z = B1 / A1
      X = A1 / C
      Y = B1 / C
      DH2RFG = T * C
 999  RETURN
C  ***  LAST LINE OF DH2RFG FOLLOWS  ***
      END
      SUBROUTINE DL7NVR(N, LIN, L)
C
C  ***  COMPUTE  LIN = L**-1,  BOTH  N X N  LOWER TRIANG. STORED   ***
C  ***  COMPACTLY BY ROWS.  LIN AND L MAY SHARE THE SAME STORAGE.  ***
C
C  ***  PARAMETERS  ***
C
      INTEGER N
      DOUBLE PRECISION L(1), LIN(1)
C     DIMENSION L(N*(N+1)/2), LIN(N*(N+1)/2)
C
C  ***  LOCAL VARIABLES  ***
C
      INTEGER I, II, IM1, JJ, J0, J1, K, K0, NP1
      DOUBLE PRECISION ONE, T, ZERO
      PARAMETER (ONE=1.D+0, ZERO=0.D+0)
C
C  ***  BODY  ***
C
      NP1 = N + 1
      J0 = N*NP1/2
      DO 30 II = 1, N
       I = NP1 - II
       LIN(J0) = ONE/L(J0)
       IF (I .LE. 1) GO TO 999
       J1 = J0
       IM1 = I - 1
       DO 20 JJ = 1, IM1
            T = ZERO
            J0 = J1
            K0 = J1 - JJ
            DO 10 K = 1, JJ
               T = T - L(K0)*LIN(J0)
               J0 = J0 - 1
               K0 = K0 + K - I
 10                CONTINUE
            LIN(J0) = T/L(K0)
 20           CONTINUE
       J0 = J0 - 1
 30      CONTINUE
 999  RETURN
C  ***  LAST CARD OF DL7NVR FOLLOWS  ***
      END
      SUBROUTINE DD7DOG(DIG, LV, N, NWTSTP, STEP, V)
C
C  ***  COMPUTE DOUBLE DOGLEG STEP  ***
C
C  ***  PARAMETER DECLARATIONS  ***
C
      INTEGER LV, N
      DOUBLE PRECISION DIG(N), NWTSTP(N), STEP(N), V(LV)
C
C  ***  PURPOSE  ***
C
C        THIS SUBROUTINE COMPUTES A CANDIDATE STEP (FOR USE IN AN UNCON-
C     STRAINED MINIMIZATION CODE) BY THE DOUBLE DOGLEG ALGORITHM OF
C     DENNIS AND MEI (REF. 1), WHICH IS A VARIATION ON POWELL*S DOGLEG
C     SCHEME (REF. 2, P. 95).
C
C--------------------------  PARAMETER USAGE  --------------------------
C
C    DIG (INPUT) DIAG(D)**-2 * G -- SEE ALGORITHM NOTES.
C      G (INPUT) THE CURRENT GRADIENT VECTOR.
C     LV (INPUT) LENGTH OF V.
C      N (INPUT) NUMBER OF COMPONENTS IN  DIG, G, NWTSTP,  AND  STEP.
C NWTSTP (INPUT) NEGATIVE NEWTON STEP -- SEE ALGORITHM NOTES.
C   STEP (OUTPUT) THE COMPUTED STEP.
C      V (I/O) VALUES ARRAY, THE FOLLOWING COMPONENTS OF WHICH ARE
C             USED HERE...
C V(BIAS)   (INPUT) BIAS FOR RELAXED NEWTON STEP, WHICH IS V(BIAS) OF
C             THE WAY FROM THE FULL NEWTON TO THE FULLY RELAXED NEWTON
C             STEP.  RECOMMENDED VALUE = 0.8 .
C V(DGNORM) (INPUT) 2-NORM OF DIAG(D)**-1 * G -- SEE ALGORITHM NOTES.
C V(DSTNRM) (OUTPUT) 2-NORM OF DIAG(D) * STEP, WHICH IS V(RADIUS)
C             UNLESS V(STPPAR) = 0 -- SEE ALGORITHM NOTES.
C V(DST0) (INPUT) 2-NORM OF DIAG(D) * NWTSTP -- SEE ALGORITHM NOTES.
C V(GRDFAC) (OUTPUT) THE COEFFICIENT OF  DIG  IN THE STEP RETURNED --
C             STEP(I) = V(GRDFAC)*DIG(I) + V(NWTFAC)*NWTSTP(I).
C V(GTHG)   (INPUT) SQUARE-ROOT OF (DIG**T) * (HESSIAN) * DIG -- SEE
C             ALGORITHM NOTES.
C V(GTSTEP) (OUTPUT) INNER PRODUCT BETWEEN G AND STEP.
C V(NREDUC) (OUTPUT) FUNCTION REDUCTION PREDICTED FOR THE FULL NEWTON
C             STEP.
C V(NWTFAC) (OUTPUT) THE COEFFICIENT OF  NWTSTP  IN THE STEP RETURNED --
C             SEE V(GRDFAC) ABOVE.
C V(PREDUC) (OUTPUT) FUNCTION REDUCTION PREDICTED FOR THE STEP RETURNED.
C V(RADIUS) (INPUT) THE TRUST REGION RADIUS.  D TIMES THE STEP RETURNED
C             HAS 2-NORM V(RADIUS) UNLESS V(STPPAR) = 0.
C V(STPPAR) (OUTPUT) CODE TELLING HOW STEP WAS COMPUTED... 0 MEANS A
C             FULL NEWTON STEP.  BETWEEN 0 AND 1 MEANS V(STPPAR) OF THE
C             WAY FROM THE NEWTON TO THE RELAXED NEWTON STEP.  BETWEEN
C             1 AND 2 MEANS A TRUE DOUBLE DOGLEG STEP, V(STPPAR) - 1 OF
C             THE WAY FROM THE RELAXED NEWTON TO THE CAUCHY STEP.
C             GREATER THAN 2 MEANS 1 / (V(STPPAR) - 1) TIMES THE CAUCHY
C             STEP.
C
C-------------------------------  NOTES  -------------------------------
C
C  ***  ALGORITHM NOTES  ***
C
C        LET  G  AND  H  BE THE CURRENT GRADIENT AND HESSIAN APPROXIMA-
C     TION RESPECTIVELY AND LET D BE THE CURRENT SCALE VECTOR.  THIS
C     ROUTINE ASSUMES DIG = DIAG(D)**-2 * G  AND  NWTSTP = H**-1 * G.
C     THE STEP COMPUTED IS THE SAME ONE WOULD GET BY REPLACING G AND H
C     BY  DIAG(D)**-1 * G  AND  DIAG(D)**-1 * H * DIAG(D)**-1,
C     COMPUTING STEP, AND TRANSLATING STEP BACK TO THE ORIGINAL
C     VARIABLES, I.E., PREMULTIPLYING IT BY DIAG(D)**-1.
C
C  ***  REFERENCES  ***
C
C 1.  DENNIS, J.E., AND MEI, H.H.W. (1979), TWO NEW UNCONSTRAINED OPTI-
C             MIZATION ALGORITHMS WHICH USE FUNCTION AND GRADIENT
C             VALUES, J. OPTIM. THEORY APPLIC. 28, PP. 453-482.
C 2. POWELL, M.J.D. (1970), A HYBRID METHOD FOR NON-LINEAR EQUATIONS,
C             IN NUMERICAL METHODS FOR NON-LINEAR EQUATIONS, EDITED BY
C             P. RABINOWITZ, GORDON AND BREACH, LONDON.
C
C  ***  GENERAL  ***
C
C     CODED BY DAVID M. GAY.
C     THIS SUBROUTINE WAS WRITTEN IN CONNECTION WITH RESEARCH SUPPORTED
C     BY THE NATIONAL SCIENCE FOUNDATION UNDER GRANTS MCS-7600324 AND
C     MCS-7906671.
C
C------------------------  EXTERNAL QUANTITIES  ------------------------
C
C  ***  INTRINSIC FUNCTIONS  ***
C/+
      DOUBLE PRECISION DSQRT
C/
C--------------------------  LOCAL VARIABLES  --------------------------
C
      INTEGER I
      DOUBLE PRECISION CFACT, CNORM, CTRNWT, GHINVG, FEMNSQ, GNORM,
     1                 NWTNRM, RELAX, RLAMBD, T, T1, T2
      DOUBLE PRECISION HALF, ONE, TWO, ZERO
C
C  ***  V SUBSCRIPTS  ***
C
      INTEGER BIAS, DGNORM, DSTNRM, DST0, GRDFAC, GTHG, GTSTEP,
     1        NREDUC, NWTFAC, PREDUC, RADIUS, STPPAR
C
C  ***  DATA INITIALIZATIONS  ***
C
      PARAMETER (HALF=0.5D+0, ONE=1.D+0, TWO=2.D+0, ZERO=0.D+0)
C
      PARAMETER (BIAS=43, DGNORM=1, DSTNRM=2, DST0=3, GRDFAC=45,
     1           GTHG=44, GTSTEP=4, NREDUC=6, NWTFAC=46, PREDUC=7,
     2           RADIUS=8, STPPAR=5)
C
C+++++++++++++++++++++++++++++++  BODY  ++++++++++++++++++++++++++++++++
C
      NWTNRM = V(DST0)
      RLAMBD = ONE
      IF (NWTNRM .GT. ZERO) RLAMBD = V(RADIUS) / NWTNRM
      GNORM = V(DGNORM)
      GHINVG = TWO * V(NREDUC)
      V(GRDFAC) = ZERO
      V(NWTFAC) = ZERO
      IF (RLAMBD .LT. ONE) GO TO 30
C
C        ***  THE NEWTON STEP IS INSIDE THE TRUST REGION  ***
C
       V(STPPAR) = ZERO
       V(DSTNRM) = NWTNRM
       V(GTSTEP) = -GHINVG
       V(PREDUC) = V(NREDUC)
       V(NWTFAC) = -ONE
       DO 20 I = 1, N
 20           STEP(I) = -NWTSTP(I)
       GO TO 999
C
 30   V(DSTNRM) = V(RADIUS)
      CFACT = (GNORM / V(GTHG))**2
C     ***  CAUCHY STEP = -CFACT * G.
      CNORM = GNORM * CFACT
      RELAX = ONE - V(BIAS) * (ONE - GNORM*CNORM/GHINVG)
      IF (RLAMBD .LT. RELAX) GO TO 50
C
C        ***  STEP IS BETWEEN RELAXED NEWTON AND FULL NEWTON STEPS  ***
C
       V(STPPAR)  =  ONE  -  (RLAMBD - RELAX) / (ONE - RELAX)
       T = -RLAMBD
       V(GTSTEP) = T * GHINVG
       V(PREDUC) = RLAMBD * (ONE - HALF*RLAMBD) * GHINVG
       V(NWTFAC) = T
       DO 40 I = 1, N
 40           STEP(I) = T * NWTSTP(I)
       GO TO 999
C
 50   IF (CNORM .LT. V(RADIUS)) GO TO 70
C
C        ***  THE CAUCHY STEP LIES OUTSIDE THE TRUST REGION --
C        ***  STEP = SCALED CAUCHY STEP  ***
C
       T = -V(RADIUS) / GNORM
       V(GRDFAC) = T
       V(STPPAR) = ONE  +  CNORM / V(RADIUS)
       V(GTSTEP) = -V(RADIUS) * GNORM
      V(PREDUC) = V(RADIUS)*(GNORM - HALF*V(RADIUS)*(V(GTHG)/GNORM)**2)
       DO 60 I = 1, N
 60           STEP(I) = T * DIG(I)
       GO TO 999
C
C     ***  COMPUTE DOGLEG STEP BETWEEN CAUCHY AND RELAXED NEWTON  ***
C     ***  FEMUR = RELAXED NEWTON STEP MINUS CAUCHY STEP  ***
C
 70   CTRNWT = CFACT * RELAX * GHINVG / GNORM
C     *** CTRNWT = INNER PROD. OF CAUCHY AND RELAXED NEWTON STEPS,
C     *** SCALED BY GNORM**-1.
      T1 = CTRNWT - GNORM*CFACT**2
C     ***  T1 = INNER PROD. OF FEMUR AND CAUCHY STEP, SCALED BY
C     ***  GNORM**-1.
      T2 = V(RADIUS)*(V(RADIUS)/GNORM) - GNORM*CFACT**2
      T = RELAX * NWTNRM
      FEMNSQ = (T/GNORM)*T - CTRNWT - T1
C     ***  FEMNSQ = SQUARE OF 2-NORM OF FEMUR, SCALED BY GNORM**-1.
      T = T2 / (T1 + DSQRT(T1**2 + FEMNSQ*T2))
C     ***  DOGLEG STEP  =  CAUCHY STEP  +  T * FEMUR.
      T1 = (T - ONE) * CFACT
      V(GRDFAC) = T1
      T2 = -T * RELAX
      V(NWTFAC) = T2
      V(STPPAR) = TWO - T
      V(GTSTEP) = T1*GNORM**2 + T2*GHINVG
      V(PREDUC) = -T1*GNORM * ((T2 + ONE)*GNORM)
     1                 - T2 * (ONE + HALF*T2)*GHINVG
     2                  - HALF * (V(GTHG)*T1)**2
      DO 80 I = 1, N
 80      STEP(I) = T1*DIG(I) + T2*NWTSTP(I)
C
 999  RETURN
C  ***  LAST LINE OF DD7DOG FOLLOWS  ***
      END
      SUBROUTINE DS7IPR(P, IP, H)
C
C  APPLY THE PERMUTATION DEFINED BY IP TO THE ROWS AND COLUMNS OF THE
C  P X P SYMMETRIC MATRIX WHOSE LOWER TRIANGLE IS STORED COMPACTLY IN H.
C  THUS H.OUTPUT(I,J) = H.INPUT(IP(I), IP(J)).
C
      INTEGER P
      INTEGER IP(P)
      DOUBLE PRECISION H(1)
C
      INTEGER I, J, J1, JM, K, K1, KK, KM, KMJ, L, M
      DOUBLE PRECISION T
C
C ***  BODY  ***
C
      DO 90 I = 1, P
       J = IP(I)
       IF (J .EQ. I) GO TO 90
       IP(I) = IABS(J)
       IF (J .LT. 0) GO TO 90
       K = I
 10         J1 = J
          K1 = K
          IF (J .LE. K) GO TO 20
             J1 = K
             K1 = J
 20         KMJ = K1-J1
          L = J1-1
          JM = J1*L/2
          KM = K1*(K1-1)/2
          IF (L .LE. 0) GO TO 40
             DO 30 M = 1, L
              JM = JM+1
              T = H(JM)
              KM = KM+1
              H(JM) = H(KM)
              H(KM) = T
 30               CONTINUE
 40         KM = KM+1
          KK = KM+KMJ
          JM = JM+1
          T = H(JM)
          H(JM) = H(KK)
          H(KK) = T
          J1 = L
          L = KMJ-1
          IF (L .LE. 0) GO TO 60
             DO 50 M = 1, L
              JM = JM+J1+M
              T = H(JM)
              KM = KM+1
              H(JM) = H(KM)
              H(KM) = T
 50               CONTINUE
 60         IF (K1 .GE. P) GO TO 80
             L = P-K1
             K1 = K1-1
             KM = KK
             DO 70 M = 1, L
              KM = KM+K1+M
              JM = KM-KMJ
              T = H(JM)
              H(JM) = H(KM)
              H(KM) = T
 70               CONTINUE
 80         K = J
          J = IP(K)
          IP(K) = -J
          IF (J .GT. I) GO TO 10
 90      CONTINUE
      RETURN
C  ***  LAST LINE OF DS7IPR FOLLOWS  ***
      END
      SUBROUTINE DH2RFA(N, A, B, X, Y, Z)
C
C  ***  APPLY 2X2 HOUSEHOLDER REFLECTION DETERMINED BY X, Y, Z TO
C  ***  N-VECTORS A, B  ***
C
      INTEGER N
      DOUBLE PRECISION A(N), B(N), X, Y, Z
      INTEGER I
      DOUBLE PRECISION T
      DO 10 I = 1, N
       T = A(I)*X + B(I)*Y
       A(I) = A(I) + T
       B(I) = B(I) + T*Z
 10      CONTINUE
      RETURN
C  ***  LAST LINE OF DH2RFA FOLLOWS  ***
      END
      SUBROUTINE DPARCK(ALG, D, IV, LIV, LV, N, V)
C
C  ***  CHECK ***SOL (VERSION 2.3) PARAMETERS, PRINT CHANGED VALUES  ***
C
C  ***  ALG = 1 FOR REGRESSION, ALG = 2 FOR GENERAL UNCONSTRAINED OPT.
C
      INTEGER ALG, LIV, LV, N
      INTEGER IV(LIV)
      DOUBLE PRECISION D(N), V(LV)
C
      DOUBLE PRECISION DR7MDC
      EXTERNAL DIVSET, DR7MDC,DV7CPY,DV7DFL
C DIVSET  -- SUPPLIES DEFAULT VALUES TO BOTH IV AND V.
C DR7MDC -- RETURNS MACHINE-DEPENDENT CONSTANTS.
C DV7CPY  -- COPIES ONE VECTOR TO ANOTHER.
C DV7DFL  -- SUPPLIES DEFAULT PARAMETER VALUES TO V ALONE.
C
C  ***  LOCAL VARIABLES  ***
C
      INTEGER ALG1, I, II, IV1, J, K, L, M, MIV1, MIV2, NDFALT, PARSV1,
     1        PU
      INTEGER IJMP, JLIM(4), MINIV(4), NDFLT(4)
      CHARACTER*4 CNGD(3), DFLT(3), WHICH(3)
      DOUBLE PRECISION BIG, MACHEP, TINY, VK, VM(34), VX(34), ZERO
C
C  ***  IV AND V SUBSCRIPTS  ***
C
      INTEGER ALGSAV, DINIT, DTYPE, DTYPE0, EPSLON, INITS, IVNEED,
     1        LASTIV, LASTV, LMAT, NEXTIV, NEXTV, NVDFLT, OLDN,
     2        PARPRT, PARSAV, PERM, PRUNIT, VNEED
C
C
      PARAMETER (ALGSAV=51, DINIT=38, DTYPE=16, DTYPE0=54, EPSLON=19,
     1           INITS=25, IVNEED=3, LASTIV=44, LASTV=45, LMAT=42,
     2           NEXTIV=46, NEXTV=47, NVDFLT=50, OLDN=38, PARPRT=20,
     3           PARSAV=49, PERM=58, PRUNIT=21, VNEED=4)
      SAVE BIG, MACHEP, TINY
C
      DATA BIG/0.D+0/, MACHEP/-1.D+0/, TINY/1.D+0/, ZERO/0.D+0/
C
      DATA VM(1)/1.0D-3/, VM(2)/-0.99D+0/, VM(3)/1.0D-3/, VM(4)/1.0D-2/,
     1     VM(5)/1.2D+0/, VM(6)/1.D-2/, VM(7)/1.2D+0/, VM(8)/0.D+0/,
     2     VM(9)/0.D+0/, VM(10)/1.D-3/, VM(11)/-1.D+0/, VM(13)/0.D+0/,
     3     VM(15)/0.D+0/, VM(16)/0.D+0/, VM(19)/0.D+0/, VM(20)/-10.D+0/,
     4     VM(21)/0.D+0/, VM(22)/0.D+0/, VM(23)/0.D+0/, VM(27)/1.01D+0/,
     5     VM(28)/1.D+10/, VM(30)/0.D+0/, VM(31)/0.D+0/, VM(32)/0.D+0/,
     6     VM(34)/0.D+0/
      DATA VX(1)/0.9D+0/, VX(2)/-1.D-3/, VX(3)/1.D+1/, VX(4)/0.8D+0/,
     1     VX(5)/1.D+2/, VX(6)/0.8D+0/, VX(7)/1.D+2/, VX(8)/0.5D+0/,
     2     VX(9)/0.5D+0/, VX(10)/1.D+0/, VX(11)/1.D+0/, VX(14)/0.1D+0/,
     3     VX(15)/1.D+0/, VX(16)/1.D+0/, VX(19)/1.D+0/, VX(23)/1.D+0/,
     4     VX(24)/1.D+0/, VX(25)/1.D+0/, VX(26)/1.D+0/, VX(27)/1.D+10/,
     5     VX(29)/1.D+0/, VX(31)/1.D+0/, VX(32)/1.D+0/, VX(33)/1.D+0/,
     6     VX(34)/1.D+0/
C
      DATA CNGD(1),CNGD(2),CNGD(3)/'---C','HANG','ED V'/,
     1     DFLT(1),DFLT(2),DFLT(3)/'NOND','EFAU','LT V'/
      DATA IJMP/33/, JLIM(1)/0/, JLIM(2)/24/, JLIM(3)/0/, JLIM(4)/24/,
     1     NDFLT(1)/32/, NDFLT(2)/25/, NDFLT(3)/32/, NDFLT(4)/25/
      DATA MINIV(1)/82/, MINIV(2)/59/, MINIV(3)/103/, MINIV(4)/103/
C
C...............................  BODY  ................................
C
      PU = 0
      IF (PRUNIT .LE. LIV) PU = IV(PRUNIT)
      IF (ALGSAV .GT. LIV) GO TO 20
      IF (ALG .EQ. IV(ALGSAV)) GO TO 20
C         IF (PU .NE. 0) WRITE(PU,10) ALG, IV(ALGSAV)
C 10      FORMAT(/40H THE FIRST PARAMETER TO DIVSET SHOULD BE,I3,
C     1          12H RATHER THAN,I3)
       IV(1) = 67
       GO TO 999
 20   IF (ALG .LT. 1 .OR. ALG .GT. 4) GO TO 340
      MIV1 = MINIV(ALG)
      IF (IV(1) .EQ. 15) GO TO 360
      ALG1 = MOD(ALG-1,2) + 1
      IF (IV(1) .EQ. 0) CALL DIVSET(ALG, IV, LIV, LV, V)
      IV1 = IV(1)
      IF (IV1 .NE. 13 .AND. IV1 .NE. 12) GO TO 30
      IF (PERM .LE. LIV) MIV1 = MAX0(MIV1, IV(PERM) - 1)
      IF (IVNEED .LE. LIV) MIV2 = MIV1 + MAX0(IV(IVNEED), 0)
      IF (LASTIV .LE. LIV) IV(LASTIV) = MIV2
      IF (LIV .LT. MIV1) GO TO 300
      IV(IVNEED) = 0
      IV(LASTV) = MAX0(IV(VNEED), 0) + IV(LMAT) - 1
      IV(VNEED) = 0
      IF (LIV .LT. MIV2) GO TO 300
      IF (LV .LT. IV(LASTV)) GO TO 320
 30   IF (IV1 .LT. 12 .OR. IV1 .GT. 14) GO TO 60
       IF (N .GE. 1) GO TO 50
            IV(1) = 81
            IF (PU .EQ. 0) GO TO 999
C              WRITE(PU,40) VARNM(ALG1), N
C 40           FORMAT(/8H /// BAD,A1,2H =,I5)
            GO TO 999
 50      IF (IV1 .NE. 14) IV(NEXTIV) = IV(PERM)
       IF (IV1 .NE. 14) IV(NEXTV) = IV(LMAT)
       IF (IV1 .EQ. 13) GO TO 999
       K = IV(PARSAV) - EPSLON
       CALL DV7DFL(ALG1, LV-K, V(K+1))
       IV(DTYPE0) = 2 - ALG1
       IV(OLDN) = N
       WHICH(1) = DFLT(1)
       WHICH(2) = DFLT(2)
       WHICH(3) = DFLT(3)
       GO TO 110
 60   IF (N .EQ. IV(OLDN)) GO TO 80
       IV(1) = 17
       IF (PU .EQ. 0) GO TO 999
C         WRITE(PU,70) VARNM(ALG1), IV(OLDN), N
C 70      FORMAT(/5H /// ,1A1,14H CHANGED FROM ,I5,4H TO ,I5)
       GO TO 999
C
 80   IF (IV1 .LE. 11 .AND. IV1 .GE. 1) GO TO 100
       IV(1) = 80
C         IF (PU .NE. 0) WRITE(PU,90) IV1
C 90      FORMAT(/13H ///  IV(1) =,I5,28H SHOULD BE BETWEEN 0 AND 14.)
       GO TO 999
C
 100  WHICH(1) = CNGD(1)
      WHICH(2) = CNGD(2)
      WHICH(3) = CNGD(3)
C
 110  IF (IV1 .EQ. 14) IV1 = 12
      IF (BIG .GT. TINY) GO TO 120
       TINY = DR7MDC(1)
       MACHEP = DR7MDC(3)
       BIG = DR7MDC(6)
       VM(12) = MACHEP
       VX(12) = BIG
       VX(13) = BIG
       VM(14) = MACHEP
       VM(17) = TINY
       VX(17) = BIG
       VM(18) = TINY
       VX(18) = BIG
       VX(20) = BIG
       VX(21) = BIG
       VX(22) = BIG
       VM(24) = MACHEP
       VM(25) = MACHEP
       VM(26) = MACHEP
       VX(28) = DR7MDC(5)
       VM(29) = MACHEP
       VX(30) = BIG
       VM(33) = MACHEP
 120  M = 0
      I = 1
      J = JLIM(ALG1)
      K = EPSLON
      NDFALT = NDFLT(ALG1)
      DO 150 L = 1, NDFALT
       VK = V(K)
       IF (VK .GE. VM(I) .AND. VK .LE. VX(I)) GO TO 140
            M = K
C              IF (PU .NE. 0) WRITE(PU,130) VN(1,I), VN(2,I), K, VK,
C     1                                    VM(I), VX(I)
C 130          FORMAT(/6H ///  ,2A4,5H.. V(,I2,3H) =,D11.3,7H SHOULD,
C     1               11H BE BETWEEN,D11.3,4H AND,D11.3)
 140     K = K + 1
       I = I + 1
       IF (I .EQ. J) I = IJMP
 150     CONTINUE
C
      IF (IV(NVDFLT) .EQ. NDFALT) GO TO 170
       IV(1) = 51
       IF (PU .EQ. 0) GO TO 999
C         WRITE(PU,160) IV(NVDFLT), NDFALT
C 160     FORMAT(/13H IV(NVDFLT) =,I5,13H RATHER THAN ,I5)
       GO TO 999
 170  IF ((IV(DTYPE) .GT. 0 .OR. V(DINIT) .GT. ZERO) .AND. IV1 .EQ. 12)
     1                  GO TO 200
      DO 190 I = 1, N
       IF (D(I) .GT. ZERO) GO TO 190
            M = 18
C              IF (PU .NE. 0) WRITE(PU,180) I, D(I)
C 180     FORMAT(/8H ///  D(,I3,3H) =,D11.3,19H SHOULD BE POSITIVE)
 190     CONTINUE
 200  IF (M .EQ. 0) GO TO 210
       IV(1) = M
       GO TO 999
C
 210  IF (PU .EQ. 0 .OR. IV(PARPRT) .EQ. 0) GO TO 999
      IF (IV1 .NE. 12 .OR. IV(INITS) .EQ. ALG1-1) GO TO 230
       M = 1
C         WRITE(PU,220) SH(ALG1), IV(INITS)
C 220     FORMAT(/22H NONDEFAULT VALUES..../5H INIT,A1,14H..... IV(25) =,
C     1          I3)
 230  IF (IV(DTYPE) .EQ. IV(DTYPE0)) GO TO 250
C         IF (M .EQ. 0) WRITE(PU,260) WHICH
       M = 1
C         WRITE(PU,240) IV(DTYPE)
C 240     FORMAT(20H DTYPE..... IV(16) =,I3)
 250  I = 1
      J = JLIM(ALG1)
      K = EPSLON
      L = IV(PARSAV)
      NDFALT = NDFLT(ALG1)
      DO 290 II = 1, NDFALT
       IF (V(K) .EQ. V(L)) GO TO 280
C              IF (M .EQ. 0) WRITE(PU,260) WHICH
C 260          FORMAT(/1H ,3A4,9HALUES..../)
            M = 1
C              WRITE(PU,270) VN(1,I), VN(2,I), K, V(K)
C 270          FORMAT(1X,2A4,5H.. V(,I2,3H) =,D15.7)
 280     K = K + 1
       L = L + 1
       I = I + 1
       IF (I .EQ. J) I = IJMP
 290     CONTINUE
C
      IV(DTYPE0) = IV(DTYPE)
      PARSV1 = IV(PARSAV)
      CALL DV7CPY(IV(NVDFLT), V(PARSV1), V(EPSLON))
      GO TO 999
C
 300  IV(1) = 15
      IF (PU .EQ. 0) GO TO 999
C      WRITE(PU,310) LIV, MIV2
C 310  FORMAT(/10H /// LIV =,I5,17H MUST BE AT LEAST,I5)
      IF (LIV .LT. MIV1) GO TO 999
      IF (LV .LT. IV(LASTV)) GO TO 320
      GO TO 999
C
 320  IV(1) = 16
C      IF (PU .NE. 0) WRITE(PU,330) LV, IV(LASTV)
C 330  FORMAT(/9H /// LV =,I5,17H MUST BE AT LEAST,I5)
      GO TO 999
C
 340  IV(1) = 67
C      IF (PU .NE. 0) WRITE(PU,350) ALG
C 350  FORMAT(/10H /// ALG =,I5,21H MUST BE 1 2, 3, OR 4)
      GO TO 999
 360  CONTINUE
C 360  IF (PU .NE. 0) WRITE(PU,370) LIV, MIV1
C 370  FORMAT(/10H /// LIV =,I5,17H MUST BE AT LEAST,I5,
C     1       37H TO COMPUTE TRUE MIN. LIV AND MIN. LV)
      IF (LASTIV .LE. LIV) IV(LASTIV) = MIV1
      IF (LASTV .LE. LIV) IV(LASTV) = 0
C
 999  RETURN
C  ***  LAST LINE OF DPARCK FOLLOWS  ***
      END
      SUBROUTINE DQ7APL(NN, N, P, J, R, IERR)
C     *****PARAMETERS.
      INTEGER NN, N, P, IERR
      DOUBLE PRECISION J(NN,P), R(N)
C
C     ..................................................................
C     ..................................................................
C
C     *****PURPOSE.
C     THIS SUBROUTINE APPLIES TO R THE ORTHOGONAL TRANSFORMATIONS
C     STORED IN J BY QRFACT
C
C     *****PARAMETER DESCRIPTION.
C     ON INPUT.
C
C        NN IS THE ROW DIMENSION OF THE MATRIX J AS DECLARED IN
C             THE CALLING PROGRAM DIMENSION STATEMENT
C
C        N IS THE NUMBER OF ROWS OF J AND THE SIZE OF THE VECTOR R
C
C        P IS THE NUMBER OF COLUMNS OF J AND THE SIZE OF SIGMA
C
C        J CONTAINS ON AND BELOW ITS DIAGONAL THE COLUMN VECTORS
C             U WHICH DETERMINE THE HOUSEHOLDER TRANSFORMATIONS
C             IDENT - U*U.TRANSPOSE
C
C        R IS THE RIGHT HAND SIDE VECTOR TO WHICH THE ORTHOGONAL
C             TRANSFORMATIONS WILL BE APPLIED
C
C        IERR IF NON-ZERO INDICATES THAT NOT ALL THE TRANSFORMATIONS
C             WERE SUCCESSFULLY DETERMINED AND ONLY THE FIRST
C             ABS(IERR) - 1 TRANSFORMATIONS WILL BE USED
C
C     ON OUTPUT.
C
C        R HAS BEEN OVERWRITTEN BY ITS TRANSFORMED IMAGE
C
C     *****APPLICATION AND USAGE RESTRICTIONS.
C     NONE
C
C     *****ALGORITHM NOTES.
C     THE VECTORS U WHICH DETERMINE THE HOUSEHOLDER TRANSFORMATIONS
C     ARE NORMALIZED SO THAT THEIR 2-NORM SQUARED IS 2.  THE USE OF
C     THESE TRANSFORMATIONS HERE IS IN THE SPIRIT OF (1).
C
C     *****SUBROUTINES AND FUNCTIONS CALLED.
C
C     DD7TPR - FUNCTION, RETURNS THE INNER PRODUCT OF VECTORS
C
C     *****REFERENCES.
C     (1) BUSINGER, P. A., AND GOLUB, G. H. (1965), LINEAR LEAST SQUARES
C        SOLUTIONS BY HOUSEHOLDER TRANSFORMATIONS, NUMER. MATH. 7,
C        PP. 269-276.
C
C     *****HISTORY.
C     DESIGNED BY DAVID M. GAY, CODED BY STEPHEN C. PETERS (WINTER 1977)
C     CALL ON DV2AXY SUBSTITUTED FOR DO LOOP, FALL 1983.
C
C     *****GENERAL.
C
C     THIS SUBROUTINE WAS WRITTEN IN CONNECTION WITH RESEARCH
C     SUPPORTED BY THE NATIONAL SCIENCE FOUNDATION UNDER GRANTS
C     MCS-7600324, DCR75-10143, 76-14311DSS, AND MCS76-11989.
C
C     ..................................................................
C     ..................................................................
C
C     *****LOCAL VARIABLES.
      INTEGER K, L, NL1
C     *****FUNCTIONS.
      DOUBLE PRECISION DD7TPR
      EXTERNAL DD7TPR,DV2AXY
C
C  ***  BODY  ***
C
      K = P
      IF (IERR .NE. 0) K = IABS(IERR) - 1
      IF ( K .EQ. 0) GO TO 999
C
      DO 20 L = 1, K
       NL1 = N - L + 1
       CALL DV2AXY(NL1, R(L), -DD7TPR(NL1,J(L,L),R(L)), J(L,L), R(L))
 20   CONTINUE
C
 999  RETURN
C  ***  LAST LINE OF DQ7APL FOLLOWS  ***
      END
      SUBROUTINE DV7DFL(ALG, LV, V)
C
C  ***  SUPPLY ***SOL (VERSION 2.3) DEFAULT VALUES TO V  ***
C
C  ***  ALG = 1 MEANS REGRESSION CONSTANTS.
C  ***  ALG = 2 MEANS GENERAL UNCONSTRAINED OPTIMIZATION CONSTANTS.
C
      INTEGER ALG, LV
      DOUBLE PRECISION V(LV)
C
      DOUBLE PRECISION DR7MDC
      EXTERNAL DR7MDC
C DR7MDC... RETURNS MACHINE-DEPENDENT CONSTANTS
C
      DOUBLE PRECISION MACHEP, MEPCRT, ONE, SQTEPS, THREE
C
C  ***  SUBSCRIPTS FOR V  ***
C
      INTEGER AFCTOL, BIAS, COSMIN, DECFAC, DELTA0, DFAC, DINIT, DLTFDC,
     1        DLTFDJ, DTINIT, D0INIT, EPSLON, ETA0, FUZZ, HUBERC,
     2        INCFAC, LMAX0, LMAXS, PHMNFC, PHMXFC, RDFCMN, RDFCMX,
     3        RFCTOL, RLIMIT, RSPTOL, SCTOL, SIGMIN, TUNER1, TUNER2,
     4        TUNER3, TUNER4, TUNER5, XCTOL, XFTOL
C
      PARAMETER (ONE=1.D+0, THREE=3.D+0)
C
C  ***  V SUBSCRIPT VALUES  ***
C
      PARAMETER (AFCTOL=31, BIAS=43, COSMIN=47, DECFAC=22, DELTA0=44,
     1           DFAC=41, DINIT=38, DLTFDC=42, DLTFDJ=43, DTINIT=39,
     2           D0INIT=40, EPSLON=19, ETA0=42, FUZZ=45, HUBERC=48,
     3           INCFAC=23, LMAX0=35, LMAXS=36, PHMNFC=20, PHMXFC=21,
     4           RDFCMN=24, RDFCMX=25, RFCTOL=32, RLIMIT=46, RSPTOL=49,
     5           SCTOL=37, SIGMIN=50, TUNER1=26, TUNER2=27, TUNER3=28,
     6           TUNER4=29, TUNER5=30, XCTOL=33, XFTOL=34)
C
C-------------------------------  BODY  --------------------------------
C
      MACHEP = DR7MDC(3)
      V(AFCTOL) = 1.D-20
      IF (MACHEP .GT. 1.D-10) V(AFCTOL) = MACHEP**2
      V(DECFAC) = 0.5D+0
      SQTEPS = DR7MDC(4)
      V(DFAC) = 0.6D+0
      V(DTINIT) = 1.D-6
      MEPCRT = MACHEP ** (ONE/THREE)
      V(D0INIT) = 1.D+0
      V(EPSLON) = 0.1D+0
      V(INCFAC) = 2.D+0
      V(LMAX0) = 1.D+0
      V(LMAXS) = 1.D+0
      V(PHMNFC) = -0.1D+0
      V(PHMXFC) = 0.1D+0
      V(RDFCMN) = 0.1D+0
      V(RDFCMX) = 4.D+0
      V(RFCTOL) = DMAX1(1.D-10, MEPCRT**2)
      V(SCTOL) = V(RFCTOL)
      V(TUNER1) = 0.1D+0
      V(TUNER2) = 1.D-4
      V(TUNER3) = 0.75D+0
      V(TUNER4) = 0.5D+0
      V(TUNER5) = 0.75D+0
      V(XCTOL) = SQTEPS
      V(XFTOL) = 1.D+2 * MACHEP
C
      IF (ALG .GE. 2) GO TO 10
C
C  ***  REGRESSION  VALUES
C
      V(COSMIN) = DMAX1(1.D-6, 1.D+2 * MACHEP)
      V(DINIT) = 0.D+0
      V(DELTA0) = SQTEPS
      V(DLTFDC) = MEPCRT
      V(DLTFDJ) = SQTEPS
      V(FUZZ) = 1.5D+0
      V(HUBERC) = 0.7D+0
      V(RLIMIT) = DR7MDC(5)
      V(RSPTOL) = 1.D-3
      V(SIGMIN) = 1.D-4
      GO TO 999
C
C  ***  GENERAL OPTIMIZATION VALUES
C
 10   V(BIAS) = 0.8D+0
      V(DINIT) = -1.0D+0
      V(ETA0) = 1.0D+3 * MACHEP
C
 999  RETURN
C  ***  LAST CARD OF DV7DFL FOLLOWS  ***
      END
      DOUBLE PRECISION FUNCTION DR7MDC(K)
C
C  ***  RETURN MACHINE DEPENDENT CONSTANTS USED BY NL2SOL  ***
C
      INTEGER K
C
C  ***  THE CONSTANT RETURNED DEPENDS ON K...
C
C  ***        K = 1... SMALLEST POS. ETA SUCH THAT -ETA EXISTS.
C  ***        K = 2... SQUARE ROOT OF ETA.
C  ***        K = 3... UNIT ROUNDOFF = SMALLEST POS. NO. MACHEP SUCH
C  ***                 THAT 1 + MACHEP .GT. 1 .AND. 1 - MACHEP .LT. 1.
C  ***        K = 4... SQUARE ROOT OF MACHEP.
C  ***        K = 5... SQUARE ROOT OF BIG (SEE K = 6).
C  ***        K = 6... LARGEST MACHINE NO. BIG SUCH THAT -BIG EXISTS.
C
      DOUBLE PRECISION BIG, ETA, MACHEP
C/+
      DOUBLE PRECISION DSQRT
C/
C
      DOUBLE PRECISION D1MACH, ZERO
      EXTERNAL D1MACH
      DATA BIG/0.D+0/, ETA/0.D+0/, MACHEP/0.D+0/, ZERO/0.D+0/
      IF (BIG .GT. ZERO) GO TO 1
       BIG = D1MACH(2)
       ETA = D1MACH(1)
       MACHEP = D1MACH(4)
 1    CONTINUE
C
C-------------------------------  BODY  --------------------------------
C
      GO TO (10, 20, 30, 40, 50, 60), K
C
 10   DR7MDC = ETA
      GO TO 999
C
 20   DR7MDC = DSQRT(256.D+0*ETA)/16.D+0
      GO TO 999
C
 30   DR7MDC = MACHEP
      GO TO 999
C
 40   DR7MDC = DSQRT(MACHEP)
      GO TO 999
C
 50   DR7MDC = DSQRT(BIG/256.D+0)*16.D+0
      GO TO 999
C
 60   DR7MDC = BIG
C
 999  RETURN
C  ***  LAST CARD OF DR7MDC FOLLOWS  ***
      END
      SUBROUTINE DG7ITB(B, D, G, IV, LIV, LV, P, PS, V, X, Y)
C
C  ***  CARRY OUT NL2SOL-LIKE ITERATIONS FOR GENERALIZED LINEAR   ***
C  ***  REGRESSION PROBLEMS (AND OTHERS OF SIMILAR STRUCTURE)     ***
C  ***  HAVING SIMPLE BOUNDS ON THE PARAMETERS BEING ESTIMATED.   ***
C
C  ***  PARAMETER DECLARATIONS  ***
C
      INTEGER LIV, LV, P, PS
      INTEGER IV(LIV)
      DOUBLE PRECISION B(2,P), D(P), G(P), V(LV), X(P), Y(P)
C
C--------------------------  PARAMETER USAGE  --------------------------
C
C B.... VECTOR OF LOWER AND UPPER BOUNDS ON X.
C D.... SCALE VECTOR.
C IV... INTEGER VALUE ARRAY.
C LIV.. LENGTH OF IV.  MUST BE AT LEAST 80.
C LH... LENGTH OF H = P*(P+1)/2.
C LV... LENGTH OF V.  MUST BE AT LEAST P*(3*P + 19)/2 + 7.
C G.... GRADIENT AT X (WHEN IV(1) = 2).
C HC... GAUSS-NEWTON HESSIAN AT X (WHEN IV(1) = 2).
C P.... NUMBER OF PARAMETERS (COMPONENTS IN X).
C PS... NUMBER OF NONZERO ROWS AND COLUMNS IN S.
C V.... FLOATING-POINT VALUE ARRAY.
C X.... PARAMETER VECTOR.
C Y.... PART OF YIELD VECTOR (WHEN IV(1)= 2, SCRATCH OTHERWISE).
C
C  ***  DISCUSSION  ***
C
C        DG7ITB IS SIMILAR TO DG7LIT, EXCEPT FOR THE EXTRA PARAMETER B
C     -- DG7ITB ENFORCES THE BOUNDS  B(1,I) .LE. X(I) .LE. B(2,I),
C     I = 1(1)P.
C        DG7ITB PERFORMS NL2SOL-LIKE ITERATIONS FOR A VARIETY OF
C     REGRESSION PROBLEMS THAT ARE SIMILAR TO NONLINEAR LEAST-SQUARES
C     IN THAT THE HESSIAN IS THE SUM OF TWO TERMS, A READILY-COMPUTED
C     FIRST-ORDER TERM AND A SECOND-ORDER TERM.  THE CALLER SUPPLIES
C     THE FIRST-ORDER TERM OF THE HESSIAN IN HC (LOWER TRIANGLE, STORED
C     COMPACTLY BY ROWS), AND DG7ITB BUILDS AN APPROXIMATION, S, TO THE
C     SECOND-ORDER TERM.  THE CALLER ALSO PROVIDES THE FUNCTION VALUE,
C     GRADIENT, AND PART OF THE YIELD VECTOR USED IN UPDATING S.
C     DG7ITB DECIDES DYNAMICALLY WHETHER OR NOT TO USE S WHEN CHOOSING
C     THE NEXT STEP TO TRY...  THE HESSIAN APPROXIMATION USED IS EITHER
C     HC ALONE (GAUSS-NEWTON MODEL) OR HC + S (AUGMENTED MODEL).
C     IF PS .LT. P, THEN ROWS AND COLUMNS PS+1...P OF S ARE KEPT
C     CONSTANT.  THEY WILL BE ZERO UNLESS THE CALLER SETS IV(INITS) TO
C     1 OR 2 AND SUPPLIES NONZERO VALUES FOR THEM, OR THE CALLER SETS
C     IV(INITS) TO 3 OR 4 AND THE FINITE-DIFFERENCE INITIAL S THEN
C     COMPUTED HAS NONZERO VALUES IN THESE ROWS.
C
C        IF IV(INITS) IS 3 OR 4, THEN THE INITIAL S IS COMPUTED BY
C     FINITE DIFFERENCES.  3 MEANS USE FUNCTION DIFFERENCES, 4 MEANS
C     USE GRADIENT DIFFERENCES.  FINITE DIFFERENCING IS DONE THE SAME
C     WAY AS IN COMPUTING A COVARIANCE MATRIX (WITH IV(COVREQ) = -1, -2,
C     1, OR 2).
C
C        FOR UPDATING S, DG7ITB ASSUMES THAT THE GRADIENT HAS THE FORM
C     OF A SUM OVER I OF RHO(I,X)*GRAD(R(I,X)), WHERE GRAD DENOTES THE
C     GRADIENT WITH RESPECT TO X.  THE TRUE SECOND-ORDER TERM THEN IS
C     THE SUM OVER I OF RHO(I,X)*HESSIAN(R(I,X)).  IF X = X0 + STEP,
C     THEN WE WISH TO UPDATE S SO THAT S*STEP IS THE SUM OVER I OF
C     RHO(I,X)*(GRAD(R(I,X)) - GRAD(R(I,X0))).  THE CALLER MUST SUPPLY
C     PART OF THIS IN Y, NAMELY THE SUM OVER I OF
C     RHO(I,X)*GRAD(R(I,X0)), WHEN CALLING DG7ITB WITH IV(1) = 2 AND
C     IV(MODE) = 0 (WHERE MODE = 38).  G THEN CONTANS THE OTHER PART,
C     SO THAT THE DESIRED YIELD VECTOR IS G - Y.  IF PS .LT. P, THEN
C     THE ABOVE DISCUSSION APPLIES ONLY TO THE FIRST PS COMPONENTS OF
C     GRAD(R(I,X)), STEP, AND Y.
C
C        PARAMETERS IV, P, V, AND X ARE THE SAME AS THE CORRESPONDING
C     ONES TO  DN2GB (AND NL2SOL), EXCEPT THAT V CAN BE SHORTER
C     (SINCE THE PART OF V THAT  DN2GB USES FOR STORING D, J, AND R IS
C     NOT NEEDED).  MOREOVER, COMPARED WITH  DN2GB (AND NL2SOL), IV(1)
C     MAY HAVE THE TWO ADDITIONAL OUTPUT VALUES 1 AND 2, WHICH ARE
C     EXPLAINED BELOW, AS IS THE USE OF IV(TOOBIG) AND IV(NFGCAL).
C     THE VALUES IV(D), IV(J), AND IV(R), WHICH ARE OUTPUT VALUES FROM
C      DN2GB (AND  DN2FB), ARE NOT REFERENCED BY DG7ITB OR THE
C     SUBROUTINES IT CALLS.
C
C        WHEN DG7ITB IS FIRST CALLED, I.E., WHEN DG7ITB IS CALLED WITH
C     IV(1) = 0 OR 12, V(F), G, AND HC NEED NOT BE INITIALIZED.  TO
C     OBTAIN THESE STARTING VALUES, DG7ITB RETURNS FIRST WITH IV(1) = 1,
C     THEN WITH IV(1) = 2, WITH IV(MODE) = -1 IN BOTH CASES.  ON
C     SUBSEQUENT RETURNS WITH IV(1) = 2, IV(MODE) = 0 IMPLIES THAT
C     Y MUST ALSO BE SUPPLIED.  (NOTE THAT Y IS USED FOR SCRATCH -- ITS
C     INPUT CONTENTS ARE LOST.  BY CONTRAST, HC IS NEVER CHANGED.)
C     ONCE CONVERGENCE HAS BEEN OBTAINED, IV(RDREQ) AND IV(COVREQ) MAY
C     IMPLY THAT A FINITE-DIFFERENCE HESSIAN SHOULD BE COMPUTED FOR USE
C     IN COMPUTING A COVARIANCE MATRIX.  IN THIS CASE DG7ITB WILL MAKE
C     A NUMBER OF RETURNS WITH IV(1) = 1 OR 2 AND IV(MODE) POSITIVE.
C     WHEN IV(MODE) IS POSITIVE, Y SHOULD NOT BE CHANGED.
C
C IV(1) = 1 MEANS THE CALLER SHOULD SET V(F) (I.E., V(10)) TO F(X), THE
C             FUNCTION VALUE AT X, AND CALL DG7ITB AGAIN, HAVING CHANGED
C             NONE OF THE OTHER PARAMETERS.  AN EXCEPTION OCCURS IF F(X)
C             CANNOT BE EVALUATED (E.G. IF OVERFLOW WOULD OCCUR), WHICH
C             MAY HAPPEN BECAUSE OF AN OVERSIZED STEP.  IN THIS CASE
C             THE CALLER SHOULD SET IV(TOOBIG) = IV(2) TO 1, WHICH WILL
C             CAUSE DG7ITB TO IGNORE V(F) AND TRY A SMALLER STEP.  NOTE
C             THAT THE CURRENT FUNCTION EVALUATION COUNT IS AVAILABLE
C             IN IV(NFCALL) = IV(6).  THIS MAY BE USED TO IDENTIFY
C             WHICH COPY OF SAVED INFORMATION SHOULD BE USED IN COM-
C             PUTING G, HC, AND Y THE NEXT TIME DG7ITB RETURNS WITH
C             IV(1) = 2.  SEE MLPIT FOR AN EXAMPLE OF THIS.
C IV(1) = 2 MEANS THE CALLER SHOULD SET G TO G(X), THE GRADIENT OF F AT
C             X.  THE CALLER SHOULD ALSO SET HC TO THE GAUSS-NEWTON
C             HESSIAN AT X.  IF IV(MODE) = 0, THEN THE CALLER SHOULD
C             ALSO COMPUTE THE PART OF THE YIELD VECTOR DESCRIBED ABOVE.
C             THE CALLER SHOULD THEN CALL DG7ITB AGAIN (WITH IV(1) = 2).
C             THE CALLER MAY ALSO CHANGE D AT THIS TIME, BUT SHOULD NOT
C             CHANGE X.  NOTE THAT IV(NFGCAL) = IV(7) CONTAINS THE
C             VALUE THAT IV(NFCALL) HAD DURING THE RETURN WITH
C             IV(1) = 1 IN WHICH X HAD THE SAME VALUE AS IT NOW HAS.
C             IV(NFGCAL) IS EITHER IV(NFCALL) OR IV(NFCALL) - 1.  MLPIT
C             IS AN EXAMPLE WHERE THIS INFORMATION IS USED.  IF G OR HC
C             CANNOT BE EVALUATED AT X, THEN THE CALLER MAY SET
C             IV(NFGCAL) TO 0, IN WHICH CASE DG7ITB WILL RETURN WITH
C             IV(1) = 15.
C
C  ***  GENERAL  ***
C
C     CODED BY DAVID M. GAY.
C
C        (SEE NL2SOL FOR REFERENCES.)
C
C+++++++++++++++++++++++++++  DECLARATIONS  ++++++++++++++++++++++++++++
C
C  ***  LOCAL VARIABLES  ***
C
      LOGICAL HAVQTR, HAVRM
      INTEGER DUMMY, DIG1, G01, H1, HC1, I, I1, IPI, IPIV0, IPIV1,
     1        IPIV2, IPN, J, K, L, LMAT1, LSTGST, P1, P1LEN, PP1, PP1O2,
     2        QTR1, RMAT1, RSTRST, STEP1, STPMOD, S1, TD1, TEMP1, TEMP2,
     3        TG1, W1, WLM1, X01
      DOUBLE PRECISION E, GI, STTSST, T, T1, XI
C
C     ***  CONSTANTS  ***
C
      DOUBLE PRECISION HALF, NEGONE, ONE, ONEP2, ZERO
C
C  ***  EXTERNAL FUNCTIONS AND SUBROUTINES  ***
C
      LOGICAL STOPX
      DOUBLE PRECISION DD7TPR, DRLDST, DV2NRM
      EXTERNAL DA7SST, DD7TPR, DF7DHB, DG7QSB,I7COPY, I7PNVR, I7SHFT,
     1        DITSUM, DL7MSB, DL7SQR, DL7TVM,DL7VML,DPARCK, DQ7RSH,
     2         DRLDST, DS7DMP, DS7IPR, DS7LUP, DS7LVM, STOPX, DV2NRM,
     3        DV2AXY,DV7CPY, DV7IPR, DV7SCP, DV7VMP
C
C DA7SST.... ASSESSES CANDIDATE STEP.
C DD7TPR... RETURNS INNER PRODUCT OF TWO VECTORS.
C DF7DHB... COMPUTE FINITE-DIFFERENCE HESSIAN (FOR INIT. S MATRIX).
C DG7QSB... COMPUTES GOLDFELD-QUANDT-TROTTER STEP (AUGMENTED MODEL).
C I7COPY.... COPIES ONE INTEGER VECTOR TO ANOTHER.
C I7PNVR... INVERTS PERMUTATION ARRAY.
C I7SHFT... SHIFTS AN INTEGER VECTOR.
C DITSUM.... PRINTS ITERATION SUMMARY AND INFO ON INITIAL AND FINAL X.
C DL7MSB... COMPUTES LEVENBERG-MARQUARDT STEP (GAUSS-NEWTON MODEL).
C DL7SQR... COMPUTES L * L**T FROM LOWER TRIANGULAR MATRIX L.
C DL7TVM... COMPUTES L**T * V, V = VECTOR, L = LOWER TRIANGULAR MATRIX.
C DL7VML.... COMPUTES L * V, V = VECTOR, L = LOWER TRIANGULAR MATRIX.
C DPARCK.... CHECK VALIDITY OF IV AND V INPUT COMPONENTS.
C DQ7RSH... SHIFTS A QR FACTORIZATION.
C DRLDST... COMPUTES V(RELDX) = RELATIVE STEP SIZE.
C DS7DMP... MULTIPLIES A SYM. MATRIX FORE AND AFT BY A DIAG. MATRIX.
C DS7IPR... APPLIES PERMUTATION TO (LOWER TRIANG. OF) SYM. MATRIX.
C DS7LUP... PERFORMS QUASI-NEWTON UPDATE ON COMPACTLY STORED LOWER TRI-
C             ANGLE OF A SYMMETRIC MATRIX.
C DS7LVM... MULTIPLIES COMPACTLY STORED SYM. MATRIX TIMES VECTOR.
C STOPX.... RETURNS .TRUE. IF THE BREAK KEY HAS BEEN PRESSED.
C DV2NRM... RETURNS THE 2-NORM OF A VECTOR.
C DV2AXY.... COMPUTES SCALAR TIMES ONE VECTOR PLUS ANOTHER.
C DV7CPY.... COPIES ONE VECTOR TO ANOTHER.
C DV7IPR... APPLIES A PERMUTATION TO A VECTOR.
C DV7SCP... SETS ALL ELEMENTS OF A VECTOR TO A SCALAR.
C DV7VMP... MULTIPLIES (DIVIDES) VECTORS COMPONENTWISE.
C
C  ***  SUBSCRIPTS FOR IV AND V  ***
C
      INTEGER CNVCOD, COSMIN, COVMAT, COVREQ, DGNORM, DIG,
     1        DSTNRM, F, FDH, FDIF, FUZZ, F0, GTSTEP, H, HC, IERR,
     2        INCFAC, INITS, IPIVOT, IRC, IVNEED, KAGQT, KALM, LMAT,
     3        LMAX0, LMAXS, MODE, MODEL, MXFCAL, MXITER, NEXTIV, NEXTV,
     4        NFCALL, NFGCAL, NFCOV, NGCOV, NGCALL, NITER, NVSAVE, P0,
     5        PC, PERM, PHMXFC, PREDUC, QTR, RADFAC, RADINC, RADIUS,
     6        RAD0, RDREQ, REGD, RELDX, RESTOR, RMAT, S, SIZE, STEP,
     7        STGLIM, STPPAR, SUSED, SWITCH, TOOBIG, TUNER4, TUNER5,
     8        VNEED, VSAVE, W, WSCALE, XIRC, X0
C
C  ***  IV SUBSCRIPT VALUES  ***
C
C  ***  (NOTE THAT P0 AND PC ARE STORED IN IV(G0) AND IV(STLSTG) RESP.)
C
      PARAMETER (CNVCOD=55, COVMAT=26, COVREQ=15, DIG=37, FDH=74, H=56,
     1           HC=71, IERR=75, INITS=25, IPIVOT=76, IRC=29, IVNEED=3,
     2           KAGQT=33, KALM=34, LMAT=42, MODE=35, MODEL=5,
     3           MXFCAL=17, MXITER=18, NEXTIV=46, NEXTV=47, NFCALL=6,
     4           NFGCAL=7, NFCOV=52, NGCOV=53, NGCALL=30, NITER=31,
     5           P0=48, PC=41, PERM=58, QTR=77, RADINC=8, RDREQ=57,
     6           REGD=67, RESTOR=9, RMAT=78, S=62, STEP=40, STGLIM=11,
     7           SUSED=64, SWITCH=12, TOOBIG=2, VNEED=4, VSAVE=60, W=65,
     8           XIRC=13, X0=43)
C
C  ***  V SUBSCRIPT VALUES  ***
C
      PARAMETER (COSMIN=47, DGNORM=1, DSTNRM=2, F=10, FDIF=11, FUZZ=45,
     1           F0=13, GTSTEP=4, INCFAC=23, LMAX0=35, LMAXS=36,
     2           NVSAVE=9, PHMXFC=21, PREDUC=7, RADFAC=16, RADIUS=8,
     3           RAD0=9, RELDX=17, SIZE=55, STPPAR=5, TUNER4=29,
     4           TUNER5=30, WSCALE=56)
C
C
      PARAMETER (HALF=0.5D+0, NEGONE=-1.D+0, ONE=1.D+0, ONEP2=1.2D+0,
     1           ZERO=0.D+0)
C
C+++++++++++++++++++++++++++++++  BODY  ++++++++++++++++++++++++++++++++
C
      I = IV(1)
      IF (I .EQ. 1) GO TO 50
      IF (I .EQ. 2) GO TO 60
C
      IF (I .LT. 12) GO TO 10
      IF (I .GT. 13) GO TO 10
       IV(VNEED) = IV(VNEED) + P*(3*P + 25)/2 + 7
       IV(IVNEED) = IV(IVNEED) + 4*P
 10   CALL DPARCK(1, D, IV, LIV, LV, P, V)
      I = IV(1) - 2
      IF (I .GT. 12) GO TO 999
      GO TO (360, 360, 360, 360, 360, 360, 240, 190, 240, 20, 20, 30), I
C
C  ***  STORAGE ALLOCATION  ***
C
 20   PP1O2 = P * (P + 1) / 2
      IV(S) = IV(LMAT) + PP1O2
      IV(X0) = IV(S) + PP1O2
      IV(STEP) = IV(X0) + 2*P
      IV(DIG) = IV(STEP) + 3*P
      IV(W) = IV(DIG) + 2*P
      IV(H) = IV(W) + 4*P + 7
      IV(NEXTV) = IV(H) + PP1O2
      IV(IPIVOT) = IV(PERM) + 3*P
      IV(NEXTIV) = IV(IPIVOT) + P
      IF (IV(1) .NE. 13) GO TO 30
       IV(1) = 14
       GO TO 999
C
C  ***  INITIALIZATION  ***
C
 30   IV(NITER) = 0
      IV(NFCALL) = 1
      IV(NGCALL) = 1
      IV(NFGCAL) = 1
      IV(MODE) = -1
      IV(STGLIM) = 2
      IV(TOOBIG) = 0
      IV(CNVCOD) = 0
      IV(COVMAT) = 0
      IV(NFCOV) = 0
      IV(NGCOV) = 0
      IV(RADINC) = 0
      IV(PC) = P
      V(RAD0) = ZERO
      V(STPPAR) = ZERO
      V(RADIUS) = V(LMAX0) / (ONE + V(PHMXFC))
C
C  ***  CHECK CONSISTENCY OF B AND INITIALIZE IP ARRAY  ***
C
      IPI = IV(IPIVOT)
      DO 40 I = 1, P
       IV(IPI) = I
       IPI = IPI + 1
       IF (B(1,I) .GT. B(2,I)) GO TO 680
 40      CONTINUE
C
C  ***  SET INITIAL MODEL AND S MATRIX  ***
C
      IV(MODEL) = 1
      IV(1) = 1
      IF (IV(S) .LT. 0) GO TO 710
      IF (IV(INITS) .GT. 1) IV(MODEL) = 2
      S1 = IV(S)
      IF (IV(INITS) .EQ. 0 .OR. IV(INITS) .GT. 2)
     1   CALL DV7SCP(P*(P+1)/2, V(S1), ZERO)
      GO TO 710
C
C  ***  NEW FUNCTION VALUE  ***
C
 50   IF (IV(MODE) .EQ. 0) GO TO 360
      IF (IV(MODE) .GT. 0) GO TO 590
C
      IF (IV(TOOBIG) .EQ. 0) GO TO 690
       IV(1) = 63
       GO TO 999
C
C  ***  MAKE SURE GRADIENT COULD BE COMPUTED  ***
C
 60   IF (IV(TOOBIG) .EQ. 0) GO TO 70
       IV(1) = 65
       GO TO 999
C
C  ***  NEW GRADIENT  ***
C
 70   IV(KALM) = -1
      IV(KAGQT) = -1
      IV(FDH) = 0
      IF (IV(MODE) .GT. 0) GO TO 590
      IF (IV(HC) .LE. 0 .AND. IV(RMAT) .LE. 0) GO TO 670
C
C  ***  CHOOSE INITIAL PERMUTATION  ***
C
      IPI = IV(IPIVOT)
      IPN = IPI + P - 1
      IPIV2 = IV(PERM) - 1
      K = IV(PC)
      P1 = P
      PP1 = P + 1
      RMAT1 = IV(RMAT)
      HAVRM = RMAT1 .GT. 0
      QTR1 = IV(QTR)
      HAVQTR = QTR1 .GT. 0
C     *** MAKE SURE V(QTR1) IS LEGAL (EVEN WHEN NOT REFERENCED) ***
      W1 = IV(W)
      IF (.NOT. HAVQTR) QTR1 = W1 + P
C
      DO 100 I = 1, P
       I1 = IV(IPN)
       IPN = IPN - 1
       IF (B(1,I1) .GE. B(2,I1)) GO TO 80
       XI = X(I1)
       GI = G(I1)
       IF (XI .LE. B(1,I1) .AND. GI .GT. ZERO) GO TO 80
       IF (XI .GE. B(2,I1) .AND. GI .LT. ZERO) GO TO 80
C           *** DISALLOW CONVERGENCE IF X(I1) HAS JUST BEEN FREED ***
          J = IPIV2 + I1
          IF (IV(J) .GT. K) IV(CNVCOD) = 0
          GO TO 100
 80      IF (I1 .GE. P1) GO TO 90
          I1 = PP1 - I
          CALL I7SHFT(P1, I1, IV(IPI))
          IF (HAVRM)
     1          CALL DQ7RSH(I1, P1, HAVQTR, V(QTR1), V(RMAT1), V(W1))
 90      P1 = P1 - 1
 100     CONTINUE
      IV(PC) = P1
C
C  ***  COMPUTE V(DGNORM) (AN OUTPUT VALUE IF WE STOP NOW)  ***
C
      V(DGNORM) = ZERO
      IF (P1 .LE. 0) GO TO 110
      DIG1 = IV(DIG)
      CALL DV7VMP(P, V(DIG1), G, D, -1)
      CALL DV7IPR(P, IV(IPI), V(DIG1))
      V(DGNORM) = DV2NRM(P1, V(DIG1))
 110  IF (IV(CNVCOD) .NE. 0) GO TO 580
      IF (IV(MODE) .EQ. 0) GO TO 510
      IV(MODE) = 0
      V(F0) = V(F)
      IF (IV(INITS) .LE. 2) GO TO 170
C
C  ***  ARRANGE FOR FINITE-DIFFERENCE INITIAL S  ***
C
      IV(XIRC) = IV(COVREQ)
      IV(COVREQ) = -1
      IF (IV(INITS) .GT. 3) IV(COVREQ) = 1
      IV(CNVCOD) = 70
      GO TO 600
C
C  ***  COME TO NEXT STMT AFTER COMPUTING F.D. HESSIAN FOR INIT. S  ***
C
 120  H1 = IV(FDH)
      IF (H1 .LE. 0) GO TO 660
      IV(CNVCOD) = 0
      IV(MODE) = 0
      IV(NFCOV) = 0
      IV(NGCOV) = 0
      IV(COVREQ) = IV(XIRC)
      S1 = IV(S)
      PP1O2 = PS * (PS + 1) / 2
      HC1 = IV(HC)
      IF (HC1 .LE. 0) GO TO 130
       CALL DV2AXY(PP1O2, V(S1), NEGONE, V(HC1), V(H1))
       GO TO 140
 130  RMAT1 = IV(RMAT)
      LMAT1 = IV(LMAT)
      CALL DL7SQR(P, V(LMAT1), V(RMAT1))
      IPI = IV(IPIVOT)
      IPIV1 = IV(PERM) + P
      CALL I7PNVR(P, IV(IPIV1), IV(IPI))
      CALL DS7IPR(P, IV(IPIV1), V(LMAT1))
      CALL DV2AXY(PP1O2, V(S1), NEGONE, V(LMAT1), V(H1))
C
C     *** ZERO PORTION OF S CORRESPONDING TO FIXED X COMPONENTS ***
C
 140  DO 160 I = 1, P
       IF (B(1,I) .LT. B(2,I)) GO TO 160
       K = S1 + I*(I-1)/2
       CALL DV7SCP(I, V(K), ZERO)
       IF (I .GE. P) GO TO 170
       K = K + 2*I - 1
       I1 = I + 1
       DO 150 J = I1, P
          V(K) = ZERO
          K = K + J
 150        CONTINUE
 160     CONTINUE
C
 170  IV(1) = 2
C
C
C-----------------------------  MAIN LOOP  -----------------------------
C
C
C  ***  PRINT ITERATION SUMMARY, CHECK ITERATION LIMIT  ***
C
 180  CALL DITSUM(D, G, IV, LIV, LV, P, V, X)
 190  K = IV(NITER)
      IF (K .LT. IV(MXITER)) GO TO 200
       IV(1) = 10
       GO TO 999
 200  IV(NITER) = K + 1
C
C  ***  UPDATE RADIUS  ***
C
      IF (K .EQ. 0) GO TO 220
      STEP1 = IV(STEP)
      DO 210 I = 1, P
       V(STEP1) = D(I) * V(STEP1)
       STEP1 = STEP1 + 1
 210     CONTINUE
      STEP1 = IV(STEP)
      T = V(RADFAC) * DV2NRM(P, V(STEP1))
      IF (V(RADFAC) .LT. ONE .OR. T .GT. V(RADIUS)) V(RADIUS) = T
C
C  ***  INITIALIZE FOR START OF NEXT ITERATION  ***
C
 220  X01 = IV(X0)
      V(F0) = V(F)
      IV(IRC) = 4
      IV(H) = -IABS(IV(H))
      IV(SUSED) = IV(MODEL)
C
C     ***  COPY X TO X0  ***
C
      CALL DV7CPY(P, V(X01), X)
C
C  ***  CHECK STOPX AND FUNCTION EVALUATION LIMIT  ***
C
 230  IF (.NOT. STOPX(DUMMY)) GO TO 250
       IV(1) = 11
       GO TO 260
C
C     ***  COME HERE WHEN RESTARTING AFTER FUNC. EVAL. LIMIT OR STOPX.
C
 240  IF (V(F) .GE. V(F0)) GO TO 250
       V(RADFAC) = ONE
       K = IV(NITER)
       GO TO 200
C
 250  IF (IV(NFCALL) .LT. IV(MXFCAL) + IV(NFCOV)) GO TO 270
       IV(1) = 9
 260     IF (V(F) .GE. V(F0)) GO TO 999
C
C        ***  IN CASE OF STOPX OR FUNCTION EVALUATION LIMIT WITH
C        ***  IMPROVED V(F), EVALUATE THE GRADIENT AT X.
C
            IV(CNVCOD) = IV(1)
            GO TO 500
C
C. . . . . . . . . . . . .  COMPUTE CANDIDATE STEP  . . . . . . . . . .
C
 270  STEP1 = IV(STEP)
      TG1 = IV(DIG)
      TD1 = TG1 + P
      X01 = IV(X0)
      W1 = IV(W)
      H1 = IV(H)
      P1 = IV(PC)
      IPI = IV(PERM)
      IPIV1 = IPI + P
      IPIV2 = IPIV1 + P
      IPIV0 = IV(IPIVOT)
      IF (IV(MODEL) .EQ. 2) GO TO 280
C
C        ***  COMPUTE LEVENBERG-MARQUARDT STEP IF POSSIBLE...
C
       RMAT1 = IV(RMAT)
       IF (RMAT1 .LE. 0) GO TO 280
       QTR1 = IV(QTR)
       IF (QTR1 .LE. 0) GO TO 280
       LMAT1 = IV(LMAT)
       WLM1 = W1 + P
       CALL DL7MSB(B, D, G, IV(IERR), IV(IPIV0), IV(IPIV1),
     1               IV(IPIV2), IV(KALM), V(LMAT1), LV, P, IV(P0),
     2               IV(PC), V(QTR1), V(RMAT1), V(STEP1), V(TD1),
     3               V(TG1), V, V(W1), V(WLM1), X, V(X01))
C        *** H IS STORED IN THE END OF W AND HAS JUST BEEN OVERWRITTEN,
C        *** SO WE MARK IT INVALID...
       IV(H) = -IABS(H1)
C        *** EVEN IF H WERE STORED ELSEWHERE, IT WOULD BE NECESSARY TO
C        *** MARK INVALID THE INFORMATION DG7QTS MAY HAVE STORED IN V...
       IV(KAGQT) = -1
       GO TO 330
C
 280  IF (H1 .GT. 0) GO TO 320
C
C     ***  SET H TO  D**-1 * (HC + T1*S) * D**-1.  ***
C
       P1LEN = P1*(P1+1)/2
       H1 = -H1
       IV(H) = H1
       IV(FDH) = 0
       IF (P1 .LE. 0) GO TO 320
C        *** MAKE TEMPORARY PERMUTATION ARRAY ***
       CALL I7COPY(P, IV(IPI), IV(IPIV0))
       J = IV(HC)
       IF (J .GT. 0) GO TO 290
          J = H1
          RMAT1 = IV(RMAT)
          CALL DL7SQR(P1, V(H1), V(RMAT1))
          GO TO 300
 290     CALL DV7CPY(P*(P+1)/2, V(H1), V(J))
       CALL DS7IPR(P, IV(IPI), V(H1))
 300     IF (IV(MODEL) .EQ. 1) GO TO 310
          LMAT1 = IV(LMAT)
          S1 = IV(S)
          CALL DV7CPY(P*(P+1)/2, V(LMAT1), V(S1))
          CALL DS7IPR(P, IV(IPI), V(LMAT1))
          CALL DV2AXY(P1LEN, V(H1), ONE, V(LMAT1), V(H1))
 310     CALL DV7CPY(P, V(TD1), D)
       CALL DV7IPR(P, IV(IPI), V(TD1))
       CALL DS7DMP(P1, V(H1), V(H1), V(TD1), -1)
       IV(KAGQT) = -1
C
C  ***  COMPUTE ACTUAL GOLDFELD-QUANDT-TROTTER STEP  ***
C
 320  LMAT1 = IV(LMAT)
      CALL DG7QSB(B, D, V(H1), G, IV(IPI), IV(IPIV1), IV(IPIV2),
     1            IV(KAGQT), V(LMAT1), LV, P, IV(P0), P1, V(STEP1),
     2            V(TD1), V(TG1), V, V(W1), X, V(X01))
      IF (IV(KALM) .GT. 0) IV(KALM) = 0
C
 330  IF (IV(IRC) .NE. 6) GO TO 340
       IF (IV(RESTOR) .NE. 2) GO TO 360
       RSTRST = 2
       GO TO 370
C
C  ***  CHECK WHETHER EVALUATING F(X0 + STEP) LOOKS WORTHWHILE  ***
C
 340  IV(TOOBIG) = 0
      IF (V(DSTNRM) .LE. ZERO) GO TO 360
      IF (IV(IRC) .NE. 5) GO TO 350
      IF (V(RADFAC) .LE. ONE) GO TO 350
      IF (V(PREDUC) .GT. ONEP2 * V(FDIF)) GO TO 350
       STEP1 = IV(STEP)
       X01 = IV(X0)
       CALL DV2AXY(P, V(STEP1), NEGONE, V(X01), X)
       IF (IV(RESTOR) .NE. 2) GO TO 360
       RSTRST = 0
       GO TO 370
C
C  ***  COMPUTE F(X0 + STEP)  ***
C
 350  X01 = IV(X0)
      STEP1 = IV(STEP)
      CALL DV2AXY(P, X, ONE, V(STEP1), V(X01))
      IV(NFCALL) = IV(NFCALL) + 1
      IV(1) = 1
      GO TO 710
C
C. . . . . . . . . . . . .  ASSESS CANDIDATE STEP  . . . . . . . . . . .
C
 360  RSTRST = 3
 370  X01 = IV(X0)
      V(RELDX) = DRLDST(P, D, X, V(X01))
      CALL DA7SST(IV, LIV, LV, V)
      STEP1 = IV(STEP)
      LSTGST = X01 + P
      I = IV(RESTOR) + 1
      GO TO (410, 380, 390, 400), I
 380  CALL DV7CPY(P, X, V(X01))
      GO TO 410
 390   CALL DV7CPY(P, V(LSTGST), V(STEP1))
       GO TO 410
 400     CALL DV7CPY(P, V(STEP1), V(LSTGST))
       CALL DV2AXY(P, X, ONE, V(STEP1), V(X01))
       V(RELDX) = DRLDST(P, D, X, V(X01))
       IV(RESTOR) = RSTRST
C
C  ***  IF NECESSARY, SWITCH MODELS  ***
C
 410  IF (IV(SWITCH) .EQ. 0) GO TO 420
       IV(H) = -IABS(IV(H))
       IV(SUSED) = IV(SUSED) + 2
       L = IV(VSAVE)
       CALL DV7CPY(NVSAVE, V, V(L))
 420  L = IV(IRC) - 4
      STPMOD = IV(MODEL)
      IF (L .GT. 0) GO TO (440,450,460,460,460,460,460,460,570,510), L
C
C  ***  DECIDE WHETHER TO CHANGE MODELS  ***
C
      E = V(PREDUC) - V(FDIF)
      S1 = IV(S)
      CALL DS7LVM(PS, Y, V(S1), V(STEP1))
      STTSST = HALF * DD7TPR(PS, V(STEP1), Y)
      IF (IV(MODEL) .EQ. 1) STTSST = -STTSST
      IF (DABS(E + STTSST) * V(FUZZ) .GE. DABS(E)) GO TO 430
C
C     ***  SWITCH MODELS  ***
C
       IV(MODEL) = 3 - IV(MODEL)
       IF (-2 .LT. L) GO TO 470
            IV(H) = -IABS(IV(H))
            IV(SUSED) = IV(SUSED) + 2
            L = IV(VSAVE)
            CALL DV7CPY(NVSAVE, V(L), V)
            GO TO 230
C
 430  IF (-3 .LT. L) GO TO 470
C
C     ***  RECOMPUTE STEP WITH DIFFERENT RADIUS  ***
C
 440  V(RADIUS) = V(RADFAC) * V(DSTNRM)
      GO TO 230
C
C  ***  COMPUTE STEP OF LENGTH V(LMAXS) FOR SINGULAR CONVERGENCE TEST
C
 450  V(RADIUS) = V(LMAXS)
      GO TO 270
C
C  ***  CONVERGENCE OR FALSE CONVERGENCE  ***
C
 460  IV(CNVCOD) = L
      IF (V(F) .GE. V(F0)) GO TO 580
       IF (IV(XIRC) .EQ. 14) GO TO 580
            IV(XIRC) = 14
C
C. . . . . . . . . . . .  PROCESS ACCEPTABLE STEP  . . . . . . . . . . .
C
 470  IV(COVMAT) = 0
      IV(REGD) = 0
C
C  ***  SEE WHETHER TO SET V(RADFAC) BY GRADIENT TESTS  ***
C
      IF (IV(IRC) .NE. 3) GO TO 500
       STEP1 = IV(STEP)
       TEMP1 = STEP1 + P
       TEMP2 = IV(X0)
C
C     ***  SET  TEMP1 = HESSIAN * STEP  FOR USE IN GRADIENT TESTS  ***
C
       HC1 = IV(HC)
       IF (HC1 .LE. 0) GO TO 480
            CALL DS7LVM(P, V(TEMP1), V(HC1), V(STEP1))
            GO TO 490
 480     RMAT1 = IV(RMAT)
       IPIV0 = IV(IPIVOT)
       CALL DV7CPY(P, V(TEMP1), V(STEP1))
       CALL DV7IPR(P, IV(IPIV0), V(TEMP1))
       CALL DL7TVM(P, V(TEMP1), V(RMAT1), V(TEMP1))
       CALL DL7VML(P, V(TEMP1), V(RMAT1), V(TEMP1))
       IPIV1 = IV(PERM) + P
       CALL I7PNVR(P, IV(IPIV1), IV(IPIV0))
       CALL DV7IPR(P, IV(IPIV1), V(TEMP1))
C
 490     IF (STPMOD .EQ. 1) GO TO 500
            S1 = IV(S)
            CALL DS7LVM(PS, V(TEMP2), V(S1), V(STEP1))
            CALL DV2AXY(PS, V(TEMP1), ONE, V(TEMP2), V(TEMP1))
C
C  ***  SAVE OLD GRADIENT AND COMPUTE NEW ONE  ***
C
 500  IV(NGCALL) = IV(NGCALL) + 1
      G01 = IV(W)
      CALL DV7CPY(P, V(G01), G)
      GO TO 690
C
C  ***  INITIALIZATIONS -- G0 = G - G0, ETC.  ***
C
 510  G01 = IV(W)
      CALL DV2AXY(P, V(G01), NEGONE, V(G01), G)
      STEP1 = IV(STEP)
      TEMP1 = STEP1 + P
      TEMP2 = IV(X0)
      IF (IV(IRC) .NE. 3) GO TO 540
C
C  ***  SET V(RADFAC) BY GRADIENT TESTS  ***
C
C     ***  SET  TEMP1 = D**-1 * (HESSIAN * STEP  +  (G(X0) - G(X)))  ***
C
       K = TEMP1
       L = G01
       DO 520 I = 1, P
            V(K) = (V(K) - V(L)) / D(I)
            K = K + 1
            L = L + 1
 520          CONTINUE
C
C        ***  DO GRADIENT TESTS  ***
C
       IF (DV2NRM(P, V(TEMP1)) .LE. V(DGNORM) * V(TUNER4))  GO TO 530
            IF (DD7TPR(P, G, V(STEP1))
     1                  .GE. V(GTSTEP) * V(TUNER5))  GO TO 540
 530               V(RADFAC) = V(INCFAC)
C
C  ***  COMPUTE Y VECTOR NEEDED FOR UPDATING S  ***
C
 540  CALL DV2AXY(PS, Y, NEGONE, Y, G)
C
C  ***  DETERMINE SIZING FACTOR V(SIZE)  ***
C
C     ***  SET TEMP1 = S * STEP  ***
      S1 = IV(S)
      CALL DS7LVM(PS, V(TEMP1), V(S1), V(STEP1))
C
      T1 = DABS(DD7TPR(PS, V(STEP1), V(TEMP1)))
      T = DABS(DD7TPR(PS, V(STEP1), Y))
      V(SIZE) = ONE
      IF (T .LT. T1) V(SIZE) = T / T1
C
C  ***  SET G0 TO WCHMTD CHOICE OF FLETCHER AND AL-BAALI  ***
C
      HC1 = IV(HC)
      IF (HC1 .LE. 0) GO TO 550
       CALL DS7LVM(PS, V(G01), V(HC1), V(STEP1))
       GO TO 560
C
 550  RMAT1 = IV(RMAT)
      IPIV0 = IV(IPIVOT)
      CALL DV7CPY(P, V(G01), V(STEP1))
      I = G01 + PS
      IF (PS .LT. P) CALL DV7SCP(P-PS, V(I), ZERO)
      CALL DV7IPR(P, IV(IPIV0), V(G01))
      CALL DL7TVM(P, V(G01), V(RMAT1), V(G01))
      CALL DL7VML(P, V(G01), V(RMAT1), V(G01))
      IPIV1 = IV(PERM) + P
      CALL I7PNVR(P, IV(IPIV1), IV(IPIV0))
      CALL DV7IPR(P, IV(IPIV1), V(G01))
C
 560  CALL DV2AXY(PS, V(G01), ONE, Y, V(G01))
C
C  ***  UPDATE S  ***
C
      CALL DS7LUP(V(S1), V(COSMIN), PS, V(SIZE), V(STEP1), V(TEMP1),
     1            V(TEMP2), V(G01), V(WSCALE), Y)
      IV(1) = 2
      GO TO 180
C
C. . . . . . . . . . . . . .  MISC. DETAILS  . . . . . . . . . . . . . .
C
C  ***  BAD PARAMETERS TO ASSESS  ***
C
 570  IV(1) = 64
      GO TO 999
C
C
C  ***  CONVERGENCE OBTAINED -- SEE WHETHER TO COMPUTE COVARIANCE  ***
C
 580  IF (IV(RDREQ) .EQ. 0) GO TO 660
      IF (IV(FDH) .NE. 0) GO TO 660
      IF (IV(CNVCOD) .GE. 7) GO TO 660
      IF (IV(REGD) .GT. 0) GO TO 660
      IF (IV(COVMAT) .GT. 0) GO TO 660
      IF (IABS(IV(COVREQ)) .GE. 3) GO TO 640
      IF (IV(RESTOR) .EQ. 0) IV(RESTOR) = 2
      GO TO 600
C
C  ***  COMPUTE FINITE-DIFFERENCE HESSIAN FOR COMPUTING COVARIANCE  ***
C
 590  IV(RESTOR) = 0
 600  CALL DF7DHB(B, D, G, I, IV, LIV, LV, P, V, X)
      GO TO (610, 620, 630), I
 610  IV(NFCOV) = IV(NFCOV) + 1
      IV(NFCALL) = IV(NFCALL) + 1
      IV(1) = 1
      GO TO 710
C
 620  IV(NGCOV) = IV(NGCOV) + 1
      IV(NGCALL) = IV(NGCALL) + 1
      IV(NFGCAL) = IV(NFCALL) + IV(NGCOV)
      GO TO 690
C
 630  IF (IV(CNVCOD) .EQ. 70) GO TO 120
      GO TO 660
C
 640  H1 = IABS(IV(H))
      IV(FDH) = H1
      IV(H) = -H1
      HC1 = IV(HC)
      IF (HC1 .LE. 0) GO TO 650
         CALL DV7CPY(P*(P+1)/2, V(H1), V(HC1))
         GO TO 660
 650  RMAT1 = IV(RMAT)
      CALL DL7SQR(P, V(H1), V(RMAT1))
C
 660  IV(MODE) = 0
      IV(1) = IV(CNVCOD)
      IV(CNVCOD) = 0
      GO TO 999
C
C  ***  SPECIAL RETURN FOR MISSING HESSIAN INFORMATION -- BOTH
C  ***  IV(HC) .LE. 0 AND IV(RMAT) .LE. 0
C
 670  IV(1) = 1400
      GO TO 999
C
C  ***  INCONSISTENT B  ***
C
 680  IV(1) = 82
      GO TO 999
C
C  *** SAVE, THEN INITIALIZE IPIVOT ARRAY BEFORE COMPUTING G ***
C
 690  IV(1) = 2
      J = IV(IPIVOT)
      IPI = IV(PERM)
      CALL I7PNVR(P, IV(IPI), IV(J))
      DO 700 I = 1, P
       IV(J) = I
       J = J + 1
 700     CONTINUE
C
C  ***  PROJECT X INTO FEASIBLE REGION (PRIOR TO COMPUTING F OR G)  ***
C
 710  DO 720 I = 1, P
       IF (X(I) .LT. B(1,I)) X(I) = B(1,I)
       IF (X(I) .GT. B(2,I)) X(I) = B(2,I)
 720     CONTINUE
      IV(TOOBIG) = 0
C
 999  RETURN
C
C  ***  LAST LINE OF DG7ITB FOLLOWS  ***
      END
      SUBROUTINE DRNSGB(A, ALF, B, C, DA, IN, IV, L, L1, LA, LIV, LV,
     1                  N, NDA, P, V, Y)
C
C  ***  ITERATION DRIVER FOR SEPARABLE NONLINEAR LEAST SQUARES,
C  ***  WITH SIMPLE BOUNDS ON THE NONLINEAR VARIABLES.
C
C  ***  PARAMETER DECLARATIONS  ***
C
      INTEGER L, L1, LA, LIV, LV, N, NDA, P
      INTEGER IN(2,NDA), IV(LIV)
C     DIMENSION UIPARM(*)
      DOUBLE PRECISION A(LA,L1), ALF(P), B(2,P), C(L), DA(LA,NDA),
     1                 V(LV), Y(N)
C
C  ***  PURPOSE  ***
C
C GIVEN A SET OF N OBSERVATIONS Y(1)....Y(N) OF A DEPENDENT VARIABLE
C T(1)...T(N), DRNSGB ATTEMPTS TO COMPUTE A LEAST SQUARES FIT
C TO A FUNCTION  ETA  (THE MODEL) WHICH IS A LINEAR COMBINATION
C
C                  L
C ETA(C,ALF,T) =  SUM C * PHI(ALF,T) +PHI   (ALF,T)
C                 J=1  J     J           L+1
C
C OF NONLINEAR FUNCTIONS PHI(J) DEPENDENT ON T AND ALF(1),...,ALF(P)
C (.E.G. A SUM OF EXPONENTIALS OR GAUSSIANS).  THAT IS, IT DETERMINES
C NONLINEAR PARAMETERS ALF WHICH MINIMIZE
C
C                   2    N                      2
C     NORM(RESIDUAL)  = SUM  (Y - ETA(C,ALF,T )) ,
C                       I=1    I             I
C
C SUBJECT TO THE SIMPLE BOUND CONSTRAINTS
C B(1,I) .LE. ALF(I) .LE. B(2,I), I = 1(1)P.
C
C THE (L+1)ST TERM IS OPTIONAL.
C
C
C  ***  PARAMETERS  ***
C
C      A (IN)  MATRIX PHI(ALF,T) OF THE MODEL.
C    ALF (I/O) NONLINEAR PARAMETERS.
C                 INPUT = INITIAL GUESS,
C                 OUTPUT = BEST ESTIMATE FOUND.
C      C (OUT) LINEAR PARAMETERS (ESTIMATED).
C     DA (IN)  DERIVATIVES OF COLUMNS OF A WITH RESPECT TO COMPONENTS
C                 OF ALF, AS SPECIFIED BY THE IN ARRAY...
C     IN (IN)  WHEN DRNSGB IS CALLED WITH IV(1) = 2 OR -2, THEN FOR
C                 I = 1(1)NDA, COLUMN I OF DA IS THE PARTIAL
C                 DERIVATIVE WITH RESPECT TO ALF(IN(1,I)) OF COLUMN
C                 IN(2,I) OF A, UNLESS IV(1,I) IS NOT POSITIVE (IN
C                 WHICH CASE COLUMN I OF DA IS IGNORED.  IV(1) = -2
C                 MEANS THERE ARE MORE COLUMNS OF DA TO COME AND
C                 DRNSGB SHOULD RETURN FOR THEM.
C     IV (I/O) INTEGER PARAMETER AND SCRATCH VECTOR.  DRNSGB RETURNS
C                 WITH IV(1) = 1 WHEN IT WANTS A TO BE EVALUATED AT
C                 ALF AND WITH IV(1) = 2 WHEN IT WANTS DA TO BE
C                 EVALUATED AT ALF.  WHEN CALLED WITH IV(1) = -2
C                 (AFTER A RETURN WITH IV(1) = 2), DRNSGB RETURNS
C                 WITH IV(1) = -2 TO GET MORE COLUMNS OF DA.
C      L (IN)  NUMBER OF LINEAR PARAMETERS TO BE ESTIMATED.
C     L1 (IN)  L+1 IF PHI(L+1) IS IN THE MODEL, L IF NOT.
C     LA (IN)  LEAD DIMENSION OF A.  MUST BE AT LEAST N.
C    LIV (IN)  LENGTH OF IV.  MUST BE AT LEAST 110 + L + 4*P.
C     LV (IN)  LENGTH OF V.  MUST BE AT LEAST
C                 105 + 2*N + L*(L+3)/2 + P*(2*P + 21 + N).
C      N (IN)  NUMBER OF OBSERVATIONS.
C    NDA (IN)  NUMBER OF COLUMNS IN DA AND IN.
C      P (IN)  NUMBER OF NONLINEAR PARAMETERS TO BE ESTIMATED.
C      V (I/O) FLOATING-POINT PARAMETER AND SCRATCH VECTOR.
C      Y (IN)  RIGHT-HAND SIDE VECTOR.
C
C
C  ***  EXTERNAL SUBROUTINES  ***
C
      DOUBLE PRECISION DL7SVX, DL7SVN, DR7MDC
      EXTERNAL DIVSET,DITSUM, DL7ITV, DL7SVX, DL7SVN, DRN2GB, DQ7APL,
     1        DQ7RFH, DR7MDC, DS7CPR,DV2AXY,DV7CPY,DV7PRM, DV7SCP
C
C DIVSET.... SUPPLIES DEFAULT PARAMETER VALUES.
C DITSUM.... PRINTS ITERATION SUMMARY, INITIAL AND FINAL ALF.
C DL7ITV... APPLIES INVERSE-TRANSPOSE OF COMPACT LOWER TRIANG. MATRIX.
C DL7SVX... ESTIMATES LARGEST SING. VALUE OF LOWER TRIANG. MATRIX.
C DL7SVN... ESTIMATES SMALLEST SING. VALUE OF LOWER TRIANG. MATRIX.
C DRN2GB... UNDERLYING NONLINEAR LEAST-SQUARES SOLVER.
C DQ7APL... APPLIES HOUSEHOLDER TRANSFORMS STORED BY DQ7RFH.
C DQ7RFH.... COMPUTES QR FACT. VIA HOUSEHOLDER TRANSFORMS WITH PIVOTING.
C DR7MDC... RETURNS MACHINE-DEP. CONSTANTS.
C DS7CPR... PRINTS LINEAR PARAMETERS AT SOLUTION.
C DV2AXY.... ADDS MULTIPLE OF ONE VECTOR TO ANOTHER.
C DV7CPY.... COPIES ONE VECTOR TO ANOTHER.
C DV7PRM.... PERMUTES VECTOR.
C DV7SCL... SCALES AND COPIES ONE VECTOR TO ANOTHER.
C
C  ***  LOCAL VARIABLES  ***
C
      INTEGER AR1, CSAVE1, D1, DR1, DR1L, I, I1,
     1        IPIV1, IER, IV1, J1, JLEN, K, LL1O2, MD, N1, N2,
     2        NML, NRAN, R1, R1L, RD1
      DOUBLE PRECISION SINGTL, T
      DOUBLE PRECISION MACHEP, NEGONE, SNGFAC, ZERO
C
C  ***  SUBSCRIPTS FOR IV AND V  ***
C
      INTEGER AR, CSAVE, D, IERS, IPIVS, IV1SAV,
     2        IVNEED, J, MODE, NEXTIV, NEXTV,
     2        NFCALL, NFGCAL, PERM, R,
     3        REGD, REGD0, RESTOR, TOOBIG, VNEED
C
C  ***  IV SUBSCRIPT VALUES  ***
C
      PARAMETER (AR=110, CSAVE=105, D=27, IERS=108, IPIVS=109,
     1           IV1SAV=104, IVNEED=3, J=70, MODE=35, NEXTIV=46,
     2           NEXTV=47, NFCALL=6, NFGCAL=7, PERM=58, R=61, REGD=67,
     3           REGD0=82, RESTOR=9, TOOBIG=2, VNEED=4)
      DATA MACHEP/-1.D+0/, NEGONE/-1.D+0/, SNGFAC/1.D+2/, ZERO/0.D+0/
C
C++++++++++++++++++++++++++++++++  BODY  ++++++++++++++++++++++++++++++
C
C
      IF (IV(1) .EQ. 0) CALL DIVSET(1, IV, LIV, LV, V)
      N1 = 1
      NML = N
      IV1 = IV(1)
      IF (IV1 .LE. 2) GO TO 20
C
C  ***  CHECK INPUT INTEGERS  ***
C
      IF (P .LE. 0) GO TO 240
      IF (L .LT. 0) GO TO 240
      IF (N .LE. L) GO TO 240
      IF (LA .LT. N) GO TO 240
      IF (IV1 .LT. 12) GO TO 20
      IF (IV1 .EQ. 14) GO TO 20
      IF (IV1 .EQ. 12) IV(1) = 13
C
C  ***  FRESH START -- COMPUTE STORAGE REQUIREMENTS  ***
C
      IF (IV(1) .GT. 16) GO TO 240
      LL1O2 = L*(L+1)/2
      JLEN = N*P
      I = L + P
      IF (IV(1) .NE. 13) GO TO 10
       IV(IVNEED) = IV(IVNEED) + L
       IV(VNEED) = IV(VNEED) + P + 2*N + JLEN + LL1O2 + L
 10   IF (IV(PERM) .LE. AR) IV(PERM) = AR + 1
      CALL DRN2GB(B, V, V, IV, LIV, LV, N, N, N1, NML, P, V, V, V, ALF)
      IF (IV(1) .NE. 14) GO TO 999
C
C  ***  STORAGE ALLOCATION  ***
C
      IV(IPIVS) = IV(NEXTIV)
      IV(NEXTIV) = IV(NEXTIV) + L
      IV(D) = IV(NEXTV)
      IV(REGD0) = IV(D) + P
      IV(AR) = IV(REGD0) + N
      IV(CSAVE) = IV(AR) + LL1O2
      IV(J) = IV(CSAVE) + L
      IV(R) = IV(J) + JLEN
      IV(NEXTV) = IV(R) + N
      IV(IERS) = 0
      IF (IV1 .EQ. 13) GO TO 999
C
C  ***  SET POINTERS INTO IV AND V  ***
C
 20   AR1 = IV(AR)
      D1 = IV(D)
      DR1 = IV(J)
      DR1L = DR1 + L
      R1 = IV(R)
      R1L = R1 + L
      RD1 = IV(REGD0)
      CSAVE1 = IV(CSAVE)
      NML = N - L
      IF (IV1 .LE. 2) GO TO 50
C
 30   N2 = NML
      CALL DRN2GB(B, V(D1), V(DR1L), IV, LIV, LV, NML, N, N1, N2, P,
     1            V(R1L), V(RD1), V, ALF)
      IF (IABS(IV(RESTOR)-2) .EQ. 1 .AND. L .GT. 0)
     1        CALL DV7CPY(L, C, V(CSAVE1))
      IV1 = IV(1)
      IF (IV1 .EQ. 2) GO TO 150
      IF (IV1 .GT. 2) GO TO 230
C
C  ***  NEW FUNCTION VALUE (RESIDUAL) NEEDED  ***
C
      IV(IV1SAV) = IV(1)
      IV(1) = IABS(IV1)
      IF (IV(RESTOR) .EQ. 2 .AND. L .GT. 0) CALL DV7CPY(L, V(CSAVE1), C)
      GO TO 999
C
C  ***  COMPUTE NEW RESIDUAL OR GRADIENT  ***
C
 50   IV(1) = IV(IV1SAV)
      MD = IV(MODE)
      IF (MD .LE. 0) GO TO 60
       NML = N
       DR1L = DR1
       R1L = R1
 60   IF (IV(TOOBIG) .NE. 0) GO TO 30
      IF (IABS(IV1) .EQ. 2) GO TO 170
C
C  ***  COMPUTE NEW RESIDUAL  ***
C
      IF (L1 .LE. L) CALL DV7CPY(N, V(R1), Y)
      IF (L1 .GT. L) CALL DV2AXY(N, V(R1), NEGONE, A(1,L1), Y)
      IF (MD .GT. 0) GO TO 120
      IER = 0
      IF (L .LE. 0) GO TO 110
      LL1O2 = L * (L + 1) / 2
      IPIV1 = IV(IPIVS)
      CALL DQ7RFH(IER, IV(IPIV1), N, LA, 0, L, A, V(AR1), LL1O2, C)
C
C *** DETERMINE NUMERICAL RANK OF A ***
C
      IF (MACHEP .LE. ZERO) MACHEP = DR7MDC(3)
      SINGTL = SNGFAC * DBLE(MAX0(L,N)) * MACHEP
      K = L
      IF (IER .NE. 0) K = IER - 1
 70   IF (K .LE. 0) GO TO 90
       T = DL7SVX(K, V(AR1), C, C)
       IF (T .GT. ZERO) T = DL7SVN(K, V(AR1), C, C) / T
       IF (T .GT. SINGTL) GO TO 80
       K = K - 1
       GO TO 70
C
C *** RECORD RANK IN IV(IERS)... IV(IERS) = 0 MEANS FULL RANK,
C *** IV(IERS) .GT. 0 MEANS RANK IV(IERS) - 1.
C
 80   IF (K .GE. L) GO TO 100
 90      IER = K + 1
       CALL DV7SCP(L-K, C(K+1), ZERO)
 100  IV(IERS) = IER
      IF (K .LE. 0) GO TO 110
C
C *** APPLY HOUSEHOLDER TRANSFORMATONS TO RESIDUALS...
C
      CALL DQ7APL(LA, N, K, A, V(R1), IER)
C
C *** COMPUTING C NOW MAY SAVE A FUNCTION EVALUATION AT
C *** THE LAST ITERATION.
C
      CALL DL7ITV(K, C, V(AR1), V(R1))
      CALL DV7PRM(L, IV(IPIV1), C)
C
 110  IF(IV(1) .LT. 2) GO TO 220
      GO TO 999
C
C
C  ***  RESIDUAL COMPUTATION FOR F.D. HESSIAN  ***
C
 120  IF (L .LE. 0) GO TO 140
      DO 130 I = 1, L
 130     CALL DV2AXY(N, V(R1), -C(I), A(1,I), V(R1))
 140  IF (IV(1) .GT. 0) GO TO 30
       IV(1) = 2
       GO TO 160
C
C  ***  NEW GRADIENT (JACOBIAN) NEEDED  ***
C
 150  IV(IV1SAV) = IV1
      IF (IV(NFGCAL) .NE. IV(NFCALL)) IV(1) = 1
 160  CALL DV7SCP(N*P, V(DR1), ZERO)
      GO TO 999
C
C  ***  COMPUTE NEW JACOBIAN  ***
C
 170  IF (NDA .LE. 0) GO TO 240
      DO 180 I = 1, NDA
       I1 = IN(1,I) - 1
       IF (I1 .LT. 0) GO TO 180
       J1 = IN(2,I)
       K = DR1 + I1*N
       T = NEGONE
       IF (J1 .LE. L) T = -C(J1)
       CALL DV2AXY(N, V(K), T, DA(1,I), V(K))
 180     CONTINUE
      IF (IV1 .EQ. 2) GO TO 190
       IV(1) = IV1
       GO TO 999
 190  IF (L .LE. 0) GO TO 30
      IF (MD .GT. 0) GO TO 30
      K = DR1
      IER = IV(IERS)
      NRAN = L
      IF (IER .GT. 0) NRAN = IER - 1
      IF (NRAN .LE. 0) GO TO 210
      DO 200 I = 1, P
       CALL DQ7APL(LA, N, NRAN, A, V(K), IER)
       K = K + N
 200     CONTINUE
 210  CALL DV7CPY(L, V(CSAVE1), C)
 220  IF (IER .EQ. 0) GO TO 30
C
C     *** ADJUST SUBSCRIPTS DESCRIBING R AND DR...
C
       NRAN = IER - 1
       DR1L = DR1 + NRAN
       NML = N - NRAN
       R1L = R1 + NRAN
       GO TO 30
C
C  ***  CONVERGENCE OR LIMIT REACHED  ***
C
 230  IF (IV(REGD) .EQ. 1) IV(REGD) = RD1
      IF (IV(1) .LE. 11) CALL DS7CPR(C, IV, L, LIV)
      GO TO 999
C
 240  IV(1) = 66
      CALL DITSUM(V, V, IV, LIV, LV, P, V, ALF)
C
 999  RETURN
C
C  ***  LAST CARD OF DRNSGB FOLLOWS  ***
      END
      SUBROUTINE DS7LUP(A, COSMIN, P, SIZE, STEP, U, W, WCHMTD, WSCALE,
     1                  Y)
C
C  ***  UPDATE SYMMETRIC  A  SO THAT  A * STEP = Y  ***
C  ***  (LOWER TRIANGLE OF  A  STORED ROWWISE       ***
C
C  ***  PARAMETER DECLARATIONS  ***
C
      INTEGER P
      DOUBLE PRECISION A(1), COSMIN, SIZE, STEP(P), U(P), W(P),
     1                 WCHMTD(P), WSCALE, Y(P)
C     DIMENSION A(P*(P+1)/2)
C
C  ***  LOCAL VARIABLES  ***
C
      INTEGER I, J, K
      DOUBLE PRECISION DENMIN, SDOTWM, T, UI, WI
C
C     ***  CONSTANTS  ***
      DOUBLE PRECISION HALF, ONE, ZERO
C
C  ***  EXTERNAL FUNCTIONS AND SUBROUTINES  ***
C
      DOUBLE PRECISION DD7TPR, DV2NRM
      EXTERNAL DD7TPR, DS7LVM, DV2NRM
C
      PARAMETER (HALF=0.5D+0, ONE=1.D+0, ZERO=0.D+0)
C
C-----------------------------------------------------------------------
C
      SDOTWM = DD7TPR(P, STEP, WCHMTD)
      DENMIN = COSMIN * DV2NRM(P,STEP) * DV2NRM(P,WCHMTD)
      WSCALE = ONE
      IF (DENMIN .NE. ZERO) WSCALE = DMIN1(ONE, DABS(SDOTWM/DENMIN))
      T = ZERO
      IF (SDOTWM .NE. ZERO) T = WSCALE / SDOTWM
      DO 10 I = 1, P
 10      W(I) = T * WCHMTD(I)
      CALL DS7LVM(P, U, A, STEP)
      T = HALF * (SIZE * DD7TPR(P, STEP, U)  -  DD7TPR(P, STEP, Y))
      DO 20 I = 1, P
 20      U(I) = T*W(I) + Y(I) - SIZE*U(I)
C
C  ***  SET  A = A + U*(W**T) + W*(U**T)  ***
C
      K = 1
      DO 40 I = 1, P
       UI = U(I)
       WI = W(I)
       DO 30 J = 1, I
            A(K) = SIZE*A(K) + UI*W(J) + WI*U(J)
            K = K + 1
 30           CONTINUE
 40      CONTINUE
C
      RETURN
C  ***  LAST CARD OF DS7LUP FOLLOWS  ***
      END
      SUBROUTINE DL7MST(D, G, IERR, IPIVOT, KA, P, QTR, R, STEP, V, W)
C
C  ***  COMPUTE LEVENBERG-MARQUARDT STEP USING MORE-HEBDEN TECHNIQUE  **
C  ***  NL2SOL VERSION 2.2.  ***
C
C  ***  PARAMETER DECLARATIONS  ***
C
      INTEGER IERR, KA, P
      INTEGER IPIVOT(P)
      DOUBLE PRECISION D(P), G(P), QTR(P), R(1), STEP(P), V(21), W(1)
C     DIMENSION W(P*(P+5)/2 + 4)
C
C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
C
C  ***  PURPOSE  ***
C
C        GIVEN THE R MATRIX FROM THE QR DECOMPOSITION OF A JACOBIAN
C     MATRIX, J, AS WELL AS Q-TRANSPOSE TIMES THE CORRESPONDING
C     RESIDUAL VECTOR, RESID, THIS SUBROUTINE COMPUTES A LEVENBERG-
C     MARQUARDT STEP OF APPROXIMATE LENGTH V(RADIUS) BY THE MORE-
C     TECHNIQUE.
C
C  ***  PARAMETER DESCRIPTION  ***
C
C      D (IN)  = THE SCALE VECTOR.
C      G (IN)  = THE GRADIENT VECTOR (J**T)*R.
C   IERR (I/O) = RETURN CODE FROM QRFACT OR DQ7RGS -- 0 MEANS R HAS
C             FULL RANK.
C IPIVOT (I/O) = PERMUTATION ARRAY FROM QRFACT OR DQ7RGS, WHICH COMPUTE
C             QR DECOMPOSITIONS WITH COLUMN PIVOTING.
C     KA (I/O).  KA .LT. 0 ON INPUT MEANS THIS IS THE FIRST CALL ON
C             DL7MST FOR THE CURRENT R AND QTR.  ON OUTPUT KA CON-
C             TAINS THE NUMBER OF HEBDEN ITERATIONS NEEDED TO DETERMINE
C             STEP.  KA = 0 MEANS A GAUSS-NEWTON STEP.
C      P (IN)  = NUMBER OF PARAMETERS.
C    QTR (IN)  = (Q**T)*RESID = Q-TRANSPOSE TIMES THE RESIDUAL VECTOR.
C      R (IN)  = THE R MATRIX, STORED COMPACTLY BY COLUMNS.
C   STEP (OUT) = THE LEVENBERG-MARQUARDT STEP COMPUTED.
C      V (I/O) CONTAINS VARIOUS CONSTANTS AND VARIABLES DESCRIBED BELOW.
C      W (I/O) = WORKSPACE OF LENGTH P*(P+5)/2 + 4.
C
C  ***  ENTRIES IN V  ***
C
C V(DGNORM) (I/O) = 2-NORM OF (D**-1)*G.
C V(DSTNRM) (I/O) = 2-NORM OF D*STEP.
C V(DST0)   (I/O) = 2-NORM OF GAUSS-NEWTON STEP (FOR NONSING. J).
C V(EPSLON) (IN) = MAX. REL. ERROR ALLOWED IN TWONORM(R)**2 MINUS
C             TWONORM(R - J*STEP)**2.  (SEE ALGORITHM NOTES BELOW.)
C V(GTSTEP) (OUT) = INNER PRODUCT BETWEEN G AND STEP.
C V(NREDUC) (OUT) = HALF THE REDUCTION IN THE SUM OF SQUARES PREDICTED
C             FOR A GAUSS-NEWTON STEP.
C V(PHMNFC) (IN)  = TOL. (TOGETHER WITH V(PHMXFC)) FOR ACCEPTING STEP
C             (MORE*S SIGMA).  THE ERROR V(DSTNRM) - V(RADIUS) MUST LIE
C             BETWEEN V(PHMNFC)*V(RADIUS) AND V(PHMXFC)*V(RADIUS).
C V(PHMXFC) (IN)  (SEE V(PHMNFC).)
C V(PREDUC) (OUT) = HALF THE REDUCTION IN THE SUM OF SQUARES PREDICTED
C             BY THE STEP RETURNED.
C V(RADIUS) (IN)  = RADIUS OF CURRENT (SCALED) TRUST REGION.
C V(RAD0)   (I/O) = VALUE OF V(RADIUS) FROM PREVIOUS CALL.
C V(STPPAR) (I/O) = MARQUARDT PARAMETER (OR ITS NEGATIVE IF THE SPECIAL
C             CASE MENTIONED BELOW IN THE ALGORITHM NOTES OCCURS).
C
C NOTE -- SEE DATA STATEMENT BELOW FOR VALUES OF ABOVE SUBSCRIPTS.
C
C  ***  USAGE NOTES  ***
C
C     IF IT IS DESIRED TO RECOMPUTE STEP USING A DIFFERENT VALUE OF
C     V(RADIUS), THEN THIS ROUTINE MAY BE RESTARTED BY CALLING IT
C     WITH ALL PARAMETERS UNCHANGED EXCEPT V(RADIUS).  (THIS EXPLAINS
C     WHY MANY PARAMETERS ARE LISTED AS I/O).  ON AN INTIIAL CALL (ONE
C     WITH KA = -1), THE CALLER NEED ONLY HAVE INITIALIZED D, G, KA, P,
C     QTR, R, V(EPSLON), V(PHMNFC), V(PHMXFC), V(RADIUS), AND V(RAD0).
C
C  ***  APPLICATION AND USAGE RESTRICTIONS  ***
C
C     THIS ROUTINE IS CALLED AS PART OF THE NL2SOL (NONLINEAR LEAST-
C     SQUARES) PACKAGE (REF. 1).
C
C  ***  ALGORITHM NOTES  ***
C
C     THIS CODE IMPLEMENTS THE STEP COMPUTATION SCHEME DESCRIBED IN
C     REFS. 2 AND 4.  FAST GIVENS TRANSFORMATIONS (SEE REF. 3, PP. 60-
C     62) ARE USED TO COMPUTE STEP WITH A NONZERO MARQUARDT PARAMETER.
C        A SPECIAL CASE OCCURS IF J IS (NEARLY) SINGULAR AND V(RADIUS)
C     IS SUFFICIENTLY LARGE.  IN THIS CASE THE STEP RETURNED IS SUCH
C     THAT  TWONORM(R)**2 - TWONORM(R - J*STEP)**2  DIFFERS FROM ITS
C     OPTIMAL VALUE BY LESS THAN V(EPSLON) TIMES THIS OPTIMAL VALUE,
C     WHERE J AND R DENOTE THE ORIGINAL JACOBIAN AND RESIDUAL.  (SEE
C     REF. 2 FOR MORE DETAILS.)
C
C  ***  FUNCTIONS AND SUBROUTINES CALLED  ***
C
C DD7TPR - RETURNS INNER PRODUCT OF TWO VECTORS.
C DL7ITV - APPLY INVERSE-TRANSPOSE OF COMPACT LOWER TRIANG. MATRIX.
C DL7IVM - APPLY INVERSE OF COMPACT LOWER TRIANG. MATRIX.
C DV7CPY  - COPIES ONE VECTOR TO ANOTHER.
C DV2NRM - RETURNS 2-NORM OF A VECTOR.
C
C  ***  REFERENCES  ***
C
C 1.  DENNIS, J.E., GAY, D.M., AND WELSCH, R.E. (1981), AN ADAPTIVE
C             NONLINEAR LEAST-SQUARES ALGORITHM, ACM TRANS. MATH.
C             SOFTWARE, VOL. 7, NO. 3.
C 2.  GAY, D.M. (1981), COMPUTING OPTIMAL LOCALLY CONSTRAINED STEPS,
C             SIAM J. SCI. STATIST. COMPUTING, VOL. 2, NO. 2, PP.
C             186-197.
C 3.  LAWSON, C.L., AND HANSON, R.J. (1974), SOLVING LEAST SQUARES
C             PROBLEMS, PRENTICE-HALL, ENGLEWOOD CLIFFS, N.J.
C 4.  MORE, J.J. (1978), THE LEVENBERG-MARQUARDT ALGORITHM, IMPLEMEN-
C             TATION AND THEORY, PP.105-116 OF SPRINGER LECTURE NOTES
C             IN MATHEMATICS NO. 630, EDITED BY G.A. WATSON, SPRINGER-
C             VERLAG, BERLIN AND NEW YORK.
C
C  ***  GENERAL  ***
C
C     CODED BY DAVID M. GAY.
C     THIS SUBROUTINE WAS WRITTEN IN CONNECTION WITH RESEARCH
C     SUPPORTED BY THE NATIONAL SCIENCE FOUNDATION UNDER GRANTS
C     MCS-7600324, DCR75-10143, 76-14311DSS, MCS76-11989, AND
C     MCS-7906671.
C
C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
C
C  ***  LOCAL VARIABLES  ***
C
      INTEGER DSTSAV, I, IP1, I1, J1, K, KALIM, L, LK0, PHIPIN,
     1        PP1O2, RES, RES0, RMAT, RMAT0, UK0
      DOUBLE PRECISION A, ADI, ALPHAK, B, DFACSQ, DST, DTOL, D1, D2,
     1                 LK, OLDPHI, PHI, PHIMAX, PHIMIN, PSIFAC, RAD,
     2                 SI, SJ, SQRTAK, T, TWOPSI, UK, WL
C
C     ***  CONSTANTS  ***
      DOUBLE PRECISION DFAC, EIGHT, HALF, NEGONE, ONE, P001, THREE,
     1                 TTOL, ZERO
      DOUBLE PRECISION BIG
C
C  ***  INTRINSIC FUNCTIONS  ***
C/+
      DOUBLE PRECISION DSQRT
C/
C  ***  EXTERNAL FUNCTIONS AND SUBROUTINES  ***
C
      DOUBLE PRECISION DD7TPR, DL7SVN, DR7MDC, DV2NRM
      EXTERNAL DD7TPR, DL7ITV, DL7IVM, DL7SVN, DR7MDC,DV7CPY, DV2NRM
C
C  ***  SUBSCRIPTS FOR V  ***
C
      INTEGER DGNORM, DSTNRM, DST0, EPSLON, GTSTEP, NREDUC, PHMNFC,
     1        PHMXFC, PREDUC, RADIUS, RAD0, STPPAR
      PARAMETER (DGNORM=1, DSTNRM=2, DST0=3, EPSLON=19, GTSTEP=4,
     1           NREDUC=6, PHMNFC=20, PHMXFC=21, PREDUC=7, RADIUS=8,
     2           RAD0=9, STPPAR=5)
C
      PARAMETER (DFAC=256.D+0, EIGHT=8.D+0, HALF=0.5D+0, NEGONE=-1.D+0,
     1     ONE=1.D+0, P001=1.D-3, THREE=3.D+0, TTOL=2.5D+0,
     2     ZERO=0.D+0)
      SAVE BIG
      DATA BIG/0.D+0/
C
C  ***  BODY  ***
C
C     ***  FOR USE IN RECOMPUTING STEP, THE FINAL VALUES OF LK AND UK,
C     ***  THE INVERSE DERIVATIVE OF MORE*S PHI AT 0 (FOR NONSING. J)
C     ***  AND THE VALUE RETURNED AS V(DSTNRM) ARE STORED AT W(LK0),
C     ***  W(UK0), W(PHIPIN), AND W(DSTSAV) RESPECTIVELY.
      LK0 = P + 1
      PHIPIN = LK0 + 1
      UK0 = PHIPIN + 1
      DSTSAV = UK0 + 1
      RMAT0 = DSTSAV
C     ***  A COPY OF THE R-MATRIX FROM THE QR DECOMPOSITION OF J IS
C     ***  STORED IN W STARTING AT W(RMAT), AND A COPY OF THE RESIDUAL
C     ***  VECTOR IS STORED IN W STARTING AT W(RES).  THE LOOPS BELOW
C     ***  THAT UPDATE THE QR DECOMP. FOR A NONZERO MARQUARDT PARAMETER
C     ***  WORK ON THESE COPIES.
      RMAT = RMAT0 + 1
      PP1O2 = P * (P + 1) / 2
      RES0 = PP1O2 + RMAT0
      RES = RES0 + 1
      RAD = V(RADIUS)
      IF (RAD .GT. ZERO)
     1   PSIFAC = V(EPSLON)/((EIGHT*(V(PHMNFC) + ONE) + THREE) * RAD**2)
      IF (BIG .LE. ZERO) BIG = DR7MDC(6)
      PHIMAX = V(PHMXFC) * RAD
      PHIMIN = V(PHMNFC) * RAD
C     ***  DTOL, DFAC, AND DFACSQ ARE USED IN RESCALING THE FAST GIVENS
C     ***  REPRESENTATION OF THE UPDATED QR DECOMPOSITION.
      DTOL = ONE/DFAC
      DFACSQ = DFAC*DFAC
C     ***  OLDPHI IS USED TO DETECT LIMITS OF NUMERICAL ACCURACY.  IF
C     ***  WE RECOMPUTE STEP AND IT DOES NOT CHANGE, THEN WE ACCEPT IT.
      OLDPHI = ZERO
      LK = ZERO
      UK = ZERO
      KALIM = KA + 12
C
C  ***  START OR RESTART, DEPENDING ON KA  ***
C
      IF (KA .EQ. 0) GO TO 20
      IF (KA .GT. 0) GO TO 370
C
C  ***  FRESH START -- COMPUTE V(NREDUC)  ***
C
      KA = 0
      KALIM = 12
      K = P
      IF (IERR .NE. 0) K = IABS(IERR) - 1
      V(NREDUC) = HALF*DD7TPR(K, QTR, QTR)
C
C  ***  SET UP TO TRY INITIAL GAUSS-NEWTON STEP  ***
C
 20   V(DST0) = NEGONE
      IF (IERR .NE. 0) GO TO 90
      T = DL7SVN(P, R, STEP, W(RES))
      IF (T .GE. ONE) GO TO 30
       IF (DV2NRM(P, QTR) .GE. BIG*T) GO TO 90
C
C  ***  COMPUTE GAUSS-NEWTON STEP  ***
C
C     ***  NOTE -- THE R-MATRIX IS STORED COMPACTLY BY COLUMNS IN
C     ***  R(1), R(2), R(3), ...  IT IS THE TRANSPOSE OF A
C     ***  LOWER TRIANGULAR MATRIX STORED COMPACTLY BY ROWS, AND WE
C     ***  TREAT IT AS SUCH WHEN USING DL7ITV AND DL7IVM.
 30   CALL DL7ITV(P, W, R, QTR)
C     ***  TEMPORARILY STORE PERMUTED -D*STEP IN STEP.
      DO 60 I = 1, P
       J1 = IPIVOT(I)
       STEP(I) = D(J1)*W(I)
 60      CONTINUE
      DST = DV2NRM(P, STEP)
      V(DST0) = DST
      PHI = DST - RAD
      IF (PHI .LE. PHIMAX) GO TO 410
C     ***  IF THIS IS A RESTART, GO TO 110  ***
      IF (KA .GT. 0) GO TO 110
C
C  ***  GAUSS-NEWTON STEP WAS UNACCEPTABLE.  COMPUTE L0  ***
C
      DO 70 I = 1, P
       J1 = IPIVOT(I)
       STEP(I) = D(J1)*(STEP(I)/DST)
 70      CONTINUE
      CALL DL7IVM(P, STEP, R, STEP)
      T = ONE / DV2NRM(P, STEP)
      W(PHIPIN) = (T/RAD)*T
      LK = PHI*W(PHIPIN)
C
C  ***  COMPUTE U0  ***
C
 90   DO 100 I = 1, P
 100     W(I) = G(I)/D(I)
      V(DGNORM) = DV2NRM(P, W)
      UK = V(DGNORM)/RAD
      IF (UK .LE. ZERO) GO TO 390
C
C     ***  ALPHAK WILL BE USED AS THE CURRENT MARQUARDT PARAMETER.  WE
C     ***  USE MORE*S SCHEME FOR INITIALIZING IT.
C
      ALPHAK = DABS(V(STPPAR)) * V(RAD0)/RAD
      ALPHAK = DMIN1(UK, DMAX1(ALPHAK, LK))
C
C
C  ***  TOP OF LOOP -- INCREMENT KA, COPY R TO RMAT, QTR TO RES  ***
C
 110  KA = KA + 1
      CALL DV7CPY(PP1O2, W(RMAT), R)
      CALL DV7CPY(P, W(RES), QTR)
C
C  ***  SAFEGUARD ALPHAK AND INITIALIZE FAST GIVENS SCALE VECTOR.  ***
C
      IF (ALPHAK .LE. ZERO .OR. ALPHAK .LT. LK .OR. ALPHAK .GE. UK)
     1             ALPHAK = UK * DMAX1(P001, DSQRT(LK/UK))
      IF (ALPHAK .LE. ZERO) ALPHAK = HALF * UK
      SQRTAK = DSQRT(ALPHAK)
      DO 120 I = 1, P
 120     W(I) = ONE
C
C  ***  ADD ALPHAK*D AND UPDATE QR DECOMP. USING FAST GIVENS TRANS.  ***
C
      DO 270 I = 1, P
C        ***  GENERATE, APPLY 1ST GIVENS TRANS. FOR ROW I OF ALPHAK*D.
C        ***  (USE STEP TO STORE TEMPORARY ROW)  ***
       L = I*(I+1)/2 + RMAT0
       WL = W(L)
       D2 = ONE
       D1 = W(I)
       J1 = IPIVOT(I)
       ADI = SQRTAK*D(J1)
       IF (ADI .GE. DABS(WL)) GO TO 150
 130     A = ADI/WL
       B = D2*A/D1
       T = A*B + ONE
       IF (T .GT. TTOL) GO TO 150
       W(I) = D1/T
       D2 = D2/T
       W(L) = T*WL
       A = -A
       DO 140 J1 = I, P
            L = L + J1
            STEP(J1) = A*W(L)
 140          CONTINUE
       GO TO 170
C
 150     B = WL/ADI
       A = D1*B/D2
       T = A*B + ONE
       IF (T .GT. TTOL) GO TO 130
       W(I) = D2/T
       D2 = D1/T
       W(L) = T*ADI
       DO 160 J1 = I, P
            L = L + J1
            WL = W(L)
            STEP(J1) = -WL
            W(L) = A*WL
 160          CONTINUE
C
 170     IF (I .EQ. P) GO TO 280
C
C        ***  NOW USE GIVENS TRANS. TO ZERO ELEMENTS OF TEMP. ROW  ***
C
       IP1 = I + 1
       DO 260 I1 = IP1, P
            SI = STEP(I1-1)
            IF (SI .EQ. ZERO) GO TO 260
            L = I1*(I1+1)/2 + RMAT0
            WL = W(L)
            D1 = W(I1)
C
C             ***  RESCALE ROW I1 IF NECESSARY  ***
C
            IF (D1 .GE. DTOL) GO TO 190
               D1 = D1*DFACSQ
               WL = WL/DFAC
               K = L
               DO 180 J1 = I1, P
                  K = K + J1
                  W(K) = W(K)/DFAC
 180                    CONTINUE
C
C             ***  USE GIVENS TRANS. TO ZERO NEXT ELEMENT OF TEMP. ROW
C
 190          IF (DABS(SI) .GT. DABS(WL)) GO TO 220
 200          A = SI/WL
            B = D2*A/D1
            T = A*B + ONE
            IF (T .GT. TTOL) GO TO 220
            W(L) = T*WL
            W(I1) = D1/T
            D2 = D2/T
            DO 210 J1 = I1, P
               L = L + J1
               WL = W(L)
               SJ = STEP(J1)
               W(L) = WL + B*SJ
               STEP(J1) = SJ - A*WL
 210               CONTINUE
            GO TO 240
C
 220          B = WL/SI
            A = D1*B/D2
            T = A*B + ONE
            IF (T .GT. TTOL) GO TO 200
            W(I1) = D2/T
            D2 = D1/T
            W(L) = T*SI
            DO 230 J1 = I1, P
               L = L + J1
               WL = W(L)
               SJ = STEP(J1)
               W(L) = A*WL + SJ
               STEP(J1) = B*SJ - WL
 230               CONTINUE
C
C             ***  RESCALE TEMP. ROW IF NECESSARY  ***
C
 240          IF (D2 .GE. DTOL) GO TO 260
               D2 = D2*DFACSQ
               DO 250 K = I1, P
 250                    STEP(K) = STEP(K)/DFAC
 260          CONTINUE
 270     CONTINUE
C
C  ***  COMPUTE STEP  ***
C
 280  CALL DL7ITV(P, W(RES), W(RMAT), W(RES))
C     ***  RECOVER STEP AND STORE PERMUTED -D*STEP AT W(RES)  ***
      DO 290 I = 1, P
       J1 = IPIVOT(I)
       K = RES0 + I
       T = W(K)
       STEP(J1) = -T
       W(K) = T*D(J1)
 290     CONTINUE
      DST = DV2NRM(P, W(RES))
      PHI = DST - RAD
      IF (PHI .LE. PHIMAX .AND. PHI .GE. PHIMIN) GO TO 430
      IF (OLDPHI .EQ. PHI) GO TO 430
      OLDPHI = PHI
C
C  ***  CHECK FOR (AND HANDLE) SPECIAL CASE  ***
C
      IF (PHI .GT. ZERO) GO TO 310
       IF (KA .GE. KALIM) GO TO 430
            TWOPSI = ALPHAK*DST*DST - DD7TPR(P, STEP, G)
            IF (ALPHAK .GE. TWOPSI*PSIFAC) GO TO 310
               V(STPPAR) = -ALPHAK
               GO TO 440
C
C  ***  UNACCEPTABLE STEP -- UPDATE LK, UK, ALPHAK, AND TRY AGAIN  ***
C
 300  IF (PHI .LT. ZERO) UK = DMIN1(UK, ALPHAK)
      GO TO 320
 310  IF (PHI .LT. ZERO) UK = ALPHAK
 320  DO 330 I = 1, P
       J1 = IPIVOT(I)
       K = RES0 + I
       STEP(I) = D(J1) * (W(K)/DST)
 330     CONTINUE
      CALL DL7IVM(P, STEP, W(RMAT), STEP)
      DO 340 I = 1, P
 340     STEP(I) = STEP(I) / DSQRT(W(I))
      T = ONE / DV2NRM(P, STEP)
      ALPHAK = ALPHAK + T*PHI*T/RAD
      LK = DMAX1(LK, ALPHAK)
      ALPHAK = LK
      GO TO 110
C
C  ***  RESTART  ***
C
 370  LK = W(LK0)
      UK = W(UK0)
      IF (V(DST0) .GT. ZERO .AND. V(DST0) - RAD .LE. PHIMAX) GO TO 20
      ALPHAK = DABS(V(STPPAR))
      DST = W(DSTSAV)
      PHI = DST - RAD
      T = V(DGNORM)/RAD
      IF (RAD .GT. V(RAD0)) GO TO 380
C
C        ***  SMALLER RADIUS  ***
       UK = T
       IF (ALPHAK .LE. ZERO) LK = ZERO
       IF (V(DST0) .GT. ZERO) LK = DMAX1(LK, (V(DST0)-RAD)*W(PHIPIN))
       GO TO 300
C
C     ***  BIGGER RADIUS  ***
 380  IF (ALPHAK .LE. ZERO .OR. UK .GT. T) UK = T
      LK = ZERO
      IF (V(DST0) .GT. ZERO) LK = DMAX1(LK, (V(DST0)-RAD)*W(PHIPIN))
      GO TO 300
C
C  ***  SPECIAL CASE -- RAD .LE. 0 OR (G = 0 AND J IS SINGULAR)  ***
C
 390  V(STPPAR) = ZERO
      DST = ZERO
      LK = ZERO
      UK = ZERO
      V(GTSTEP) = ZERO
      V(PREDUC) = ZERO
      DO 400 I = 1, P
 400     STEP(I) = ZERO
      GO TO 450
C
C  ***  ACCEPTABLE GAUSS-NEWTON STEP -- RECOVER STEP FROM W  ***
C
 410  ALPHAK = ZERO
      DO 420 I = 1, P
       J1 = IPIVOT(I)
       STEP(J1) = -W(I)
 420     CONTINUE
C
C  ***  SAVE VALUES FOR USE IN A POSSIBLE RESTART  ***
C
 430  V(STPPAR) = ALPHAK
 440  V(GTSTEP) = DMIN1(DD7TPR(P,STEP,G), ZERO)
      V(PREDUC) = HALF * (ALPHAK*DST*DST - V(GTSTEP))
 450  V(DSTNRM) = DST
      W(DSTSAV) = DST
      W(LK0) = LK
      W(UK0) = UK
      V(RAD0) = RAD
C
      RETURN
C
C  ***  LAST CARD OF DL7MST FOLLOWS  ***
      END
      SUBROUTINE DRMNFB(B, D, FX, IV, LIV, LV, P, V, X)
C
C  ***  ITERATION DRIVER FOR  DMNF...
C  ***  MINIMIZE GENERAL UNCONSTRAINED OBJECTIVE FUNCTION USING
C  ***  FINITE-DIFFERENCE GRADIENTS AND SECANT HESSIAN APPROXIMATIONS.
C
      INTEGER LIV, LV, P
      INTEGER IV(LIV)
      DOUBLE PRECISION B(2,P), D(P), FX, X(P), V(LV)
C     DIMENSION IV(59 + P), V(77 + P*(P+23)/2)
C
C  ***  PURPOSE  ***
C
C        THIS ROUTINE INTERACTS WITH SUBROUTINE  DRMNGB  IN AN ATTEMPT
C     TO FIND AN P-VECTOR  X*  THAT MINIMIZES THE (UNCONSTRAINED)
C     OBJECTIVE FUNCTION  FX = F(X)  COMPUTED BY THE CALLER.  (OFTEN
C     THE  X*  FOUND IS A LOCAL MINIMIZER RATHER THAN A GLOBAL ONE.)
C
C  ***  PARAMETERS  ***
C
C        THE PARAMETERS FOR DRMNFB ARE THE SAME AS THOSE FOR  DMNG
C     (WHICH SEE), EXCEPT THAT CALCF, CALCG, UIPARM, URPARM, AND UFPARM
C     ARE OMITTED, AND A PARAMETER  FX  FOR THE OBJECTIVE FUNCTION
C     VALUE AT X IS ADDED.  INSTEAD OF CALLING CALCG TO OBTAIN THE
C     GRADIENT OF THE OBJECTIVE FUNCTION AT X, DRMNFB CALLS DS3GRD,
C     WHICH COMPUTES AN APPROXIMATION TO THE GRADIENT BY FINITE
C     (FORWARD AND CENTRAL) DIFFERENCES USING THE METHOD OF REF. 1.
C     THE FOLLOWING INPUT COMPONENT IS OF INTEREST IN THIS REGARD
C     (AND IS NOT DESCRIBED IN  DMNG).
C
C V(ETA0)..... V(42) IS AN ESTIMATED BOUND ON THE RELATIVE ERROR IN THE
C             OBJECTIVE FUNCTION VALUE COMPUTED BY CALCF...
C                  (TRUE VALUE) = (COMPUTED VALUE) * (1 + E),
C             WHERE ABS(E) .LE. V(ETA0).  DEFAULT = MACHEP * 10**3,
C             WHERE MACHEP IS THE UNIT ROUNDOFF.
C
C        THE OUTPUT VALUES IV(NFCALL) AND IV(NGCALL) HAVE DIFFERENT
C     MEANINGS FOR  DMNF THAN FOR  DMNG...
C
C IV(NFCALL)... IV(6) IS THE NUMBER OF CALLS SO FAR MADE ON CALCF (I.E.,
C             FUNCTION EVALUATIONS) EXCLUDING THOSE MADE ONLY FOR
C             COMPUTING GRADIENTS.  THE INPUT VALUE IV(MXFCAL) IS A
C             LIMIT ON IV(NFCALL).
C IV(NGCALL)... IV(30) IS THE NUMBER OF FUNCTION EVALUATIONS MADE ONLY
C             FOR COMPUTING GRADIENTS.  THE TOTAL NUMBER OF FUNCTION
C             EVALUATIONS IS THUS  IV(NFCALL) + IV(NGCALL).
C
C  ***  REFERENCES  ***
C
C 1. STEWART, G.W. (1967), A MODIFICATION OF DAVIDON*S MINIMIZATION
C        METHOD TO ACCEPT DIFFERENCE APPROXIMATIONS OF DERIVATIVES,
C        J. ASSOC. COMPUT. MACH. 14, PP. 72-83.
C.
C  ***  GENERAL  ***
C
C     CODED BY DAVID M. GAY (AUGUST 1982).
C
C----------------------------  DECLARATIONS  ---------------------------
C
      DOUBLE PRECISION DD7TPR
      EXTERNAL DIVSET, DD7TPR, DS3GRD, DRMNGB, DV7SCP
C
C DIVSET.... SUPPLIES DEFAULT PARAMETER VALUES.
C DD7TPR... RETURNS INNER PRODUCT OF TWO VECTORS.
C DS3GRD... COMPUTES FINITE-DIFFERENCE GRADIENT APPROXIMATION.
C DRMNGB... REVERSE-COMMUNICATION ROUTINE THAT DOES  DMNGB ALGORITHM.
C DV7SCP... SETS ALL ELEMENTS OF A VECTOR TO A SCALAR.
C
      INTEGER ALPHA, ALPHA0, G1, I, IPI, IV1, J, K, W
      DOUBLE PRECISION ZERO
C
C  ***  SUBSCRIPTS FOR IV   ***
C
      INTEGER ETA0, F, G, LMAT, NEXTV, NGCALL,
     1        NITER, PERM, SGIRC, TOOBIG, VNEED
C
      PARAMETER (ETA0=42, F=10, G=28, LMAT=42, NEXTV=47, NGCALL=30,
     1           NITER=31, PERM=58, SGIRC=57, TOOBIG=2, VNEED=4)
      PARAMETER (ZERO=0.D+0)
C
C+++++++++++++++++++++++++++++++  BODY  ++++++++++++++++++++++++++++++++
C
      IV1 = IV(1)
      IF (IV1 .EQ. 1) GO TO 10
      IF (IV1 .EQ. 2) GO TO 50
      IF (IV(1) .EQ. 0) CALL DIVSET(2, IV, LIV, LV, V)
      IV1 = IV(1)
      IF (IV1 .EQ. 12 .OR. IV1 .EQ. 13) IV(VNEED) = IV(VNEED) + 2*P + 6
      IF (IV1 .EQ. 14) GO TO 10
      IF (IV1 .GT. 2 .AND. IV1 .LT. 12) GO TO 10
      G1 = 1
      IF (IV1 .EQ. 12) IV(1) = 13
      GO TO 20
C
 10   G1 = IV(G)
C
 20   CALL DRMNGB(B, D, FX, V(G1), IV, LIV, LV, P, V, X)
      IF (IV(1) .LT. 2) GO TO 999
      IF (IV(1) .GT. 2) GO TO 80
C
C  ***  COMPUTE GRADIENT  ***
C
      IF (IV(NITER) .EQ. 0) CALL DV7SCP(P, V(G1), ZERO)
      J = IV(LMAT)
      ALPHA0 = G1 - P - 1
      IPI = IV(PERM)
      DO 40 I = 1, P
       K = ALPHA0 + IV(IPI)
       V(K) = DD7TPR(I, V(J), V(J))
       IPI = IPI + 1
       J = J + I
 40      CONTINUE
C     ***  UNDO INCREMENT OF IV(NGCALL) DONE BY DRMNGB  ***
      IV(NGCALL) = IV(NGCALL) - 1
C     ***  STORE RETURN CODE FROM DS3GRD IN IV(SGIRC)  ***
      IV(SGIRC) = 0
C     ***  X MAY HAVE BEEN RESTORED, SO COPY BACK FX... ***
      FX = V(F)
      GO TO 60
C
C     ***  GRADIENT LOOP  ***
C
 50   IF (IV(TOOBIG) .NE. 0) GO TO 10
C
 60   G1 = IV(G)
      ALPHA = G1 - P
      W = ALPHA - 6
      CALL DS3GRD(V(ALPHA), B, D, V(ETA0), FX, V(G1), IV(SGIRC), P,
     1            V(W), X)
      I = IV(SGIRC)
      IF (I .EQ. 0) GO TO 10
      IF (I .LE. P) GO TO 70
       IV(TOOBIG) = 1
       GO TO 10
C
 70   IV(NGCALL) = IV(NGCALL) + 1
      GO TO 999
C
 80   IF (IV(1) .NE. 14) GO TO 999
C
C  ***  STORAGE ALLOCATION  ***
C
      IV(G) = IV(NEXTV) + P + 6
      IV(NEXTV) = IV(G) + P
      IF (IV1 .NE. 13) GO TO 10
C
 999  RETURN
C  ***  LAST CARD OF DRMNFB FOLLOWS  ***
      END
      SUBROUTINE D7EGR(N,INDROW,JPNTR,INDCOL,IPNTR,NDEG,IWA,BWA)
      INTEGER N
      INTEGER INDROW(1),JPNTR(1),INDCOL(1),IPNTR(1),NDEG(N),IWA(N)
      LOGICAL BWA(N)
C     **********
C
C     SUBROUTINE D7EGR
C
C     GIVEN THE SPARSITY PATTERN OF AN M BY N MATRIX A,
C     THIS SUBROUTINE DETERMINES THE DEGREE SEQUENCE FOR
C     THE INTERSECTION GRAPH OF THE COLUMNS OF A.
C
C     IN GRAPH-THEORY TERMINOLOGY, THE INTERSECTION GRAPH OF
C     THE COLUMNS OF A IS THE LOOPLESS GRAPH G WITH VERTICES
C     A(J), J = 1,2,...,N WHERE A(J) IS THE J-TH COLUMN OF A
C     AND WITH EDGE (A(I),A(J)) IF AND ONLY IF COLUMNS I AND J
C     HAVE A NON-ZERO IN THE SAME ROW POSITION.
C
C     NOTE THAT THE VALUE OF M IS NOT NEEDED BY D7EGR AND IS
C     THEREFORE NOT PRESENT IN THE SUBROUTINE STATEMENT.
C
C     THE SUBROUTINE STATEMENT IS
C
C       SUBROUTINE D7EGR(N,INDROW,JPNTR,INDCOL,IPNTR,NDEG,IWA,BWA)
C
C     WHERE
C
C       N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C         OF COLUMNS OF A.
C
C       INDROW IS AN INTEGER INPUT ARRAY WHICH CONTAINS THE ROW
C         INDICES FOR THE NON-ZEROES IN THE MATRIX A.
C
C       JPNTR IS AN INTEGER INPUT ARRAY OF LENGTH N + 1 WHICH
C         SPECIFIES THE LOCATIONS OF THE ROW INDICES IN INDROW.
C         THE ROW INDICES FOR COLUMN J ARE
C
C               INDROW(K), K = JPNTR(J),...,JPNTR(J+1)-1.
C
C         NOTE THAT JPNTR(N+1)-1 IS THEN THE NUMBER OF NON-ZERO
C         ELEMENTS OF THE MATRIX A.
C
C       INDCOL IS AN INTEGER INPUT ARRAY WHICH CONTAINS THE
C         COLUMN INDICES FOR THE NON-ZEROES IN THE MATRIX A.
C
C       IPNTR IS AN INTEGER INPUT ARRAY OF LENGTH M + 1 WHICH
C         SPECIFIES THE LOCATIONS OF THE COLUMN INDICES IN INDCOL.
C         THE COLUMN INDICES FOR ROW I ARE
C
C               INDCOL(K), K = IPNTR(I),...,IPNTR(I+1)-1.
C
C         NOTE THAT IPNTR(M+1)-1 IS THEN THE NUMBER OF NON-ZERO
C         ELEMENTS OF THE MATRIX A.
C
C       NDEG IS AN INTEGER OUTPUT ARRAY OF LENGTH N WHICH
C         SPECIFIES THE DEGREE SEQUENCE. THE DEGREE OF THE
C         J-TH COLUMN OF A IS NDEG(J).
C
C       IWA IS AN INTEGER WORK ARRAY OF LENGTH N.
C
C       BWA IS A LOGICAL WORK ARRAY OF LENGTH N.
C
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. JUNE 1982.
C     THOMAS F. COLEMAN, BURTON S. GARBOW, JORGE J. MORE
C
C     **********
      INTEGER DEG,IC,IP,IPL,IPU,IR,JCOL,JP,JPL,JPU
C
C     INITIALIZATION BLOCK.
C
      DO 10 JP = 1, N
       NDEG(JP) = 0
       BWA(JP) = .FALSE.
   10    CONTINUE
C
C     COMPUTE THE DEGREE SEQUENCE BY DETERMINING THE CONTRIBUTIONS
C     TO THE DEGREES FROM THE CURRENT(JCOL) COLUMN AND FURTHER
C     COLUMNS WHICH HAVE NOT YET BEEN CONSIDERED.
C
      IF (N .LT. 2) GO TO 90
      DO 80 JCOL = 2, N
       BWA(JCOL) = .TRUE.
       DEG = 0
C
C        DETERMINE ALL POSITIONS (IR,JCOL) WHICH CORRESPOND
C        TO NON-ZEROES IN THE MATRIX.
C
       JPL = JPNTR(JCOL)
       JPU = JPNTR(JCOL+1) - 1
       IF (JPU .LT. JPL) GO TO 50
       DO 40 JP = JPL, JPU
          IR = INDROW(JP)
C
C           FOR EACH ROW IR, DETERMINE ALL POSITIONS (IR,IC)
C           WHICH CORRESPOND TO NON-ZEROES IN THE MATRIX.
C
          IPL = IPNTR(IR)
          IPU = IPNTR(IR+1) - 1
          DO 30 IP = IPL, IPU
             IC = INDCOL(IP)
C
C              ARRAY BWA MARKS COLUMNS WHICH HAVE CONTRIBUTED TO
C              THE DEGREE COUNT OF COLUMN JCOL. UPDATE THE DEGREE
C              COUNTS OF THESE COLUMNS. ARRAY IWA RECORDS THE
C              MARKED COLUMNS.
C
             IF (BWA(IC)) GO TO 20
             BWA(IC) = .TRUE.
             NDEG(IC) = NDEG(IC) + 1
             DEG = DEG + 1
             IWA(DEG) = IC
   20          CONTINUE
   30          CONTINUE
   40       CONTINUE
   50    CONTINUE
C
C        UN-MARK THE COLUMNS RECORDED BY IWA AND FINALIZE THE
C        DEGREE COUNT OF COLUMN JCOL.
C
       IF (DEG .LT. 1) GO TO 70
       DO 60 JP = 1, DEG
          IC = IWA(JP)
          BWA(IC) = .FALSE.
   60       CONTINUE
       NDEG(JCOL) = NDEG(JCOL) + DEG
   70    CONTINUE
   80    CONTINUE
   90 CONTINUE
      RETURN
C
C     LAST CARD OF SUBROUTINE D7EGR.
C
      END
      SUBROUTINE DRMNG(D, FX, G, IV, LIV, LV, N, V, X)
C
C  ***  CARRY OUT  DMNG (UNCONSTRAINED MINIMIZATION) ITERATIONS, USING
C  ***  DOUBLE-DOGLEG/BFGS STEPS.
C
C  ***  PARAMETER DECLARATIONS  ***
C
      INTEGER LIV, LV, N
      INTEGER IV(LIV)
      DOUBLE PRECISION D(N), FX, G(N), V(LV), X(N)
C
C--------------------------  PARAMETER USAGE  --------------------------
C
C D.... SCALE VECTOR.
C FX... FUNCTION VALUE.
C G.... GRADIENT VECTOR.
C IV... INTEGER VALUE ARRAY.
C LIV.. LENGTH OF IV (AT LEAST 60).
C LV... LENGTH OF V (AT LEAST 71 + N*(N+13)/2).
C N.... NUMBER OF VARIABLES (COMPONENTS IN X AND G).
C V.... FLOATING-POINT VALUE ARRAY.
C X.... VECTOR OF PARAMETERS TO BE OPTIMIZED.
C
C  ***  DISCUSSION  ***
C
C        PARAMETERS IV, N, V, AND X ARE THE SAME AS THE CORRESPONDING
C     ONES TO  DMNG (WHICH SEE), EXCEPT THAT V CAN BE SHORTER (SINCE
C     THE PART OF V THAT  DMNG USES FOR STORING G IS NOT NEEDED).
C     MOREOVER, COMPARED WITH  DMNG, IV(1) MAY HAVE THE TWO ADDITIONAL
C     OUTPUT VALUES 1 AND 2, WHICH ARE EXPLAINED BELOW, AS IS THE USE
C     OF IV(TOOBIG) AND IV(NFGCAL).  THE VALUE IV(G), WHICH IS AN
C     OUTPUT VALUE FROM  DMNG (AND  DMNF), IS NOT REFERENCED BY
C     DRMNG OR THE SUBROUTINES IT CALLS.
C        FX AND G NEED NOT HAVE BEEN INITIALIZED WHEN DRMNG IS CALLED
C     WITH IV(1) = 12, 13, OR 14.
C
C IV(1) = 1 MEANS THE CALLER SHOULD SET FX TO F(X), THE FUNCTION VALUE
C             AT X, AND CALL DRMNG AGAIN, HAVING CHANGED NONE OF THE
C             OTHER PARAMETERS.  AN EXCEPTION OCCURS IF F(X) CANNOT BE
C             (E.G. IF OVERFLOW WOULD OCCUR), WHICH MAY HAPPEN BECAUSE
C             OF AN OVERSIZED STEP.  IN THIS CASE THE CALLER SHOULD SET
C             IV(TOOBIG) = IV(2) TO 1, WHICH WILL CAUSE DRMNG TO IG-
C             NORE FX AND TRY A SMALLER STEP.  THE PARAMETER NF THAT
C              DMNG PASSES TO CALCF (FOR POSSIBLE USE BY CALCG) IS A
C             COPY OF IV(NFCALL) = IV(6).
C IV(1) = 2 MEANS THE CALLER SHOULD SET G TO G(X), THE GRADIENT VECTOR
C             OF F AT X, AND CALL DRMNG AGAIN, HAVING CHANGED NONE OF
C             THE OTHER PARAMETERS EXCEPT POSSIBLY THE SCALE VECTOR D
C             WHEN IV(DTYPE) = 0.  THE PARAMETER NF THAT  DMNG PASSES
C             TO CALCG IS IV(NFGCAL) = IV(7).  IF G(X) CANNOT BE
C             EVALUATED, THEN THE CALLER MAY SET IV(TOOBIG) TO 0, IN
C             WHICH CASE DRMNG WILL RETURN WITH IV(1) = 65.
C.
C  ***  GENERAL  ***
C
C     CODED BY DAVID M. GAY (DECEMBER 1979).  REVISED SEPT. 1982.
C     THIS SUBROUTINE WAS WRITTEN IN CONNECTION WITH RESEARCH SUPPORTED
C     IN PART BY THE NATIONAL SCIENCE FOUNDATION UNDER GRANTS
C     MCS-7600324 AND MCS-7906671.
C
C        (SEE  DMNG FOR REFERENCES.)
C
C+++++++++++++++++++++++++++  DECLARATIONS  ++++++++++++++++++++++++++++
C
C  ***  LOCAL VARIABLES  ***
C
      INTEGER DG1, DUMMY, G01, I, K, L, LSTGST, NWTST1, RSTRST, STEP1,
     1        TEMP1, W, X01, Z
      DOUBLE PRECISION T
C
C     ***  CONSTANTS  ***
C
      DOUBLE PRECISION HALF, NEGONE, ONE, ONEP2, ZERO
C
C  ***  NO INTRINSIC FUNCTIONS  ***
C
C  ***  EXTERNAL FUNCTIONS AND SUBROUTINES  ***
C
      LOGICAL STOPX
      DOUBLE PRECISION DD7TPR, DRLDST, DV2NRM
      EXTERNAL DA7SST,DD7DOG,DIVSET, DD7TPR,DITSUM, DL7ITV, DL7IVM,
     1         DL7TVM, DL7UPD,DL7VML,DPARCK, DRLDST, STOPX,DV2AXY,
     2        DV7CPY, DV7SCP, DV7VMP, DV2NRM, DW7ZBF
C
C DA7SST.... ASSESSES CANDIDATE STEP.
C DD7DOG.... COMPUTES DOUBLE-DOGLEG (CANDIDATE) STEP.
C DIVSET.... SUPPLIES DEFAULT IV AND V INPUT COMPONENTS.
C DD7TPR... RETURNS INNER PRODUCT OF TWO VECTORS.
C DITSUM.... PRINTS ITERATION SUMMARY AND INFO ON INITIAL AND FINAL X.
C DL7ITV... MULTIPLIES INVERSE TRANSPOSE OF LOWER TRIANGLE TIMES VECTOR.
C DL7IVM... MULTIPLIES INVERSE OF LOWER TRIANGLE TIMES VECTOR.
C DL7TVM... MULTIPLIES TRANSPOSE OF LOWER TRIANGLE TIMES VECTOR.
C LUPDT.... UPDATES CHOLESKY FACTOR OF HESSIAN APPROXIMATION.
C DL7VML.... MULTIPLIES LOWER TRIANGLE TIMES VECTOR.
C DPARCK.... CHECKS VALIDITY OF INPUT IV AND V VALUES.
C DRLDST... COMPUTES V(RELDX) = RELATIVE STEP SIZE.
C STOPX.... RETURNS .TRUE. IF THE BREAK KEY HAS BEEN PRESSED.
C DV2AXY.... COMPUTES SCALAR TIMES ONE VECTOR PLUS ANOTHER.
C DV7CPY.... COPIES ONE VECTOR TO ANOTHER.
C DV7SCP... SETS ALL ELEMENTS OF A VECTOR TO A SCALAR.
C DV7VMP... MULTIPLIES VECTOR BY VECTOR RAISED TO POWER (COMPONENTWISE).
C DV2NRM... RETURNS THE 2-NORM OF A VECTOR.
C DW7ZBF... COMPUTES W AND Z FOR DL7UPD CORRESPONDING TO BFGS UPDATE.
C
C  ***  SUBSCRIPTS FOR IV AND V  ***
C
      INTEGER CNVCOD, DG, DGNORM, DINIT, DSTNRM, DST0, F, F0, FDIF,
     1        GTHG, GTSTEP, G0, INCFAC, INITH, IRC, KAGQT, LMAT, LMAX0,
     2        LMAXS, MODE, MODEL, MXFCAL, MXITER, NEXTV, NFCALL, NFGCAL,
     3        NGCALL, NITER, NREDUC, NWTSTP, PREDUC, RADFAC, RADINC,
     4        RADIUS, RAD0, RELDX, RESTOR, STEP, STGLIM, STLSTG, TOOBIG,
     5        TUNER4, TUNER5, VNEED, XIRC, X0
C
C  ***  IV SUBSCRIPT VALUES  ***
C
      PARAMETER (CNVCOD=55, DG=37, G0=48, INITH=25, IRC=29, KAGQT=33,
     1           MODE=35, MODEL=5, MXFCAL=17, MXITER=18, NFCALL=6,
     2           NFGCAL=7, NGCALL=30, NITER=31, NWTSTP=34, RADINC=8,
     3           RESTOR=9, STEP=40, STGLIM=11, STLSTG=41, TOOBIG=2,
     4           VNEED=4, XIRC=13, X0=43)
C
C  ***  V SUBSCRIPT VALUES  ***
C
      PARAMETER (DGNORM=1, DINIT=38, DSTNRM=2, DST0=3, F=10, F0=13,
     1           FDIF=11, GTHG=44, GTSTEP=4, INCFAC=23, LMAT=42,
     2           LMAX0=35, LMAXS=36, NEXTV=47, NREDUC=6, PREDUC=7,
     3           RADFAC=16, RADIUS=8, RAD0=9, RELDX=17, TUNER4=29,
     4           TUNER5=30)
C
      PARAMETER (HALF=0.5D+0, NEGONE=-1.D+0, ONE=1.D+0, ONEP2=1.2D+0,
     1           ZERO=0.D+0)
C
C+++++++++++++++++++++++++++++++  BODY  ++++++++++++++++++++++++++++++++
C
      I = IV(1)
      IF (I .EQ. 1) GO TO 50
      IF (I .EQ. 2) GO TO 60
C
C  ***  CHECK VALIDITY OF IV AND V INPUT VALUES  ***
C
      IF (IV(1) .EQ. 0) CALL DIVSET(2, IV, LIV, LV, V)
      IF (IV(1) .EQ. 12 .OR. IV(1) .EQ. 13)
     1     IV(VNEED) = IV(VNEED) + N*(N+13)/2
      CALL DPARCK(2, D, IV, LIV, LV, N, V)
      I = IV(1) - 2
      IF (I .GT. 12) GO TO 999
      GO TO (190, 190, 190, 190, 190, 190, 120, 90, 120, 10, 10, 20), I
C
C  ***  STORAGE ALLOCATION  ***
C
 10   L = IV(LMAT)
      IV(X0) = L + N*(N+1)/2
      IV(STEP) = IV(X0) + N
      IV(STLSTG) = IV(STEP) + N
      IV(G0) = IV(STLSTG) + N
      IV(NWTSTP) = IV(G0) + N
      IV(DG) = IV(NWTSTP) + N
      IV(NEXTV) = IV(DG) + N
      IF (IV(1) .NE. 13) GO TO 20
       IV(1) = 14
       GO TO 999
C
C  ***  INITIALIZATION  ***
C
 20   IV(NITER) = 0
      IV(NFCALL) = 1
      IV(NGCALL) = 1
      IV(NFGCAL) = 1
      IV(MODE) = -1
      IV(MODEL) = 1
      IV(STGLIM) = 1
      IV(TOOBIG) = 0
      IV(CNVCOD) = 0
      IV(RADINC) = 0
      V(RAD0) = ZERO
      IF (V(DINIT) .GE. ZERO) CALL DV7SCP(N, D, V(DINIT))
      IF (IV(INITH) .NE. 1) GO TO 40
C
C     ***  SET THE INITIAL HESSIAN APPROXIMATION TO DIAG(D)**-2  ***
C
       L = IV(LMAT)
       CALL DV7SCP(N*(N+1)/2, V(L), ZERO)
       K = L - 1
       DO 30 I = 1, N
            K = K + I
            T = D(I)
            IF (T .LE. ZERO) T = ONE
            V(K) = T
 30           CONTINUE
C
C  ***  COMPUTE INITIAL FUNCTION VALUE  ***
C
 40   IV(1) = 1
      GO TO 999
C
 50   V(F) = FX
      IF (IV(MODE) .GE. 0) GO TO 190
      V(F0) = FX
      IV(1) = 2
      IF (IV(TOOBIG) .EQ. 0) GO TO 999
       IV(1) = 63
       GO TO 350
C
C  ***  MAKE SURE GRADIENT COULD BE COMPUTED  ***
C
 60   IF (IV(TOOBIG) .EQ. 0) GO TO 70
       IV(1) = 65
       GO TO 350
C
 70   DG1 = IV(DG)
      CALL DV7VMP(N, V(DG1), G, D, -1)
      V(DGNORM) = DV2NRM(N, V(DG1))
C
      IF (IV(CNVCOD) .NE. 0) GO TO 340
      IF (IV(MODE) .EQ. 0) GO TO 300
C
C  ***  ALLOW FIRST STEP TO HAVE SCALED 2-NORM AT MOST V(LMAX0)  ***
C
      V(RADIUS) = V(LMAX0)
C
      IV(MODE) = 0
C
C
C-----------------------------  MAIN LOOP  -----------------------------
C
C
C  ***  PRINT ITERATION SUMMARY, CHECK ITERATION LIMIT  ***
C
 80   CALL DITSUM(D, G, IV, LIV, LV, N, V, X)
 90   K = IV(NITER)
      IF (K .LT. IV(MXITER)) GO TO 100
       IV(1) = 10
       GO TO 350
C
C  ***  UPDATE RADIUS  ***
C
 100  IV(NITER) = K + 1
      IF (K .GT. 0) V(RADIUS) = V(RADFAC) * V(DSTNRM)
C
C  ***  INITIALIZE FOR START OF NEXT ITERATION  ***
C
      G01 = IV(G0)
      X01 = IV(X0)
      V(F0) = V(F)
      IV(IRC) = 4
      IV(KAGQT) = -1
C
C     ***  COPY X TO X0, G TO G0  ***
C
      CALL DV7CPY(N, V(X01), X)
      CALL DV7CPY(N, V(G01), G)
C
C  ***  CHECK STOPX AND FUNCTION EVALUATION LIMIT  ***
C
 110  IF (.NOT. STOPX(DUMMY)) GO TO 130
       IV(1) = 11
       GO TO 140
C
C     ***  COME HERE WHEN RESTARTING AFTER FUNC. EVAL. LIMIT OR STOPX.
C
 120  IF (V(F) .GE. V(F0)) GO TO 130
       V(RADFAC) = ONE
       K = IV(NITER)
       GO TO 100
C
 130  IF (IV(NFCALL) .LT. IV(MXFCAL)) GO TO 150
       IV(1) = 9
 140     IF (V(F) .GE. V(F0)) GO TO 350
C
C        ***  IN CASE OF STOPX OR FUNCTION EVALUATION LIMIT WITH
C        ***  IMPROVED V(F), EVALUATE THE GRADIENT AT X.
C
            IV(CNVCOD) = IV(1)
            GO TO 290
C
C. . . . . . . . . . . . .  COMPUTE CANDIDATE STEP  . . . . . . . . . .
C
 150  STEP1 = IV(STEP)
      DG1 = IV(DG)
      NWTST1 = IV(NWTSTP)
      IF (IV(KAGQT) .GE. 0) GO TO 160
       L = IV(LMAT)
       CALL DL7IVM(N, V(NWTST1), V(L), G)
       V(NREDUC) = HALF * DD7TPR(N, V(NWTST1), V(NWTST1))
       CALL DL7ITV(N, V(NWTST1), V(L), V(NWTST1))
       CALL DV7VMP(N, V(STEP1), V(NWTST1), D, 1)
       V(DST0) = DV2NRM(N, V(STEP1))
       CALL DV7VMP(N, V(DG1), V(DG1), D, -1)
       CALL DL7TVM(N, V(STEP1), V(L), V(DG1))
       V(GTHG) = DV2NRM(N, V(STEP1))
       IV(KAGQT) = 0
 160  CALL DD7DOG(V(DG1), LV, N, V(NWTST1), V(STEP1), V)
      IF (IV(IRC) .NE. 6) GO TO 170
       IF (IV(RESTOR) .NE. 2) GO TO 190
       RSTRST = 2
       GO TO 200
C
C  ***  CHECK WHETHER EVALUATING F(X0 + STEP) LOOKS WORTHWHILE  ***
C
 170  IV(TOOBIG) = 0
      IF (V(DSTNRM) .LE. ZERO) GO TO 190
      IF (IV(IRC) .NE. 5) GO TO 180
      IF (V(RADFAC) .LE. ONE) GO TO 180
      IF (V(PREDUC) .GT. ONEP2 * V(FDIF)) GO TO 180
       IF (IV(RESTOR) .NE. 2) GO TO 190
       RSTRST = 0
       GO TO 200
C
C  ***  COMPUTE F(X0 + STEP)  ***
C
 180  X01 = IV(X0)
      STEP1 = IV(STEP)
      CALL DV2AXY(N, X, ONE, V(STEP1), V(X01))
      IV(NFCALL) = IV(NFCALL) + 1
      IV(1) = 1
      GO TO 999
C
C. . . . . . . . . . . . .  ASSESS CANDIDATE STEP  . . . . . . . . . . .
C
 190  RSTRST = 3
 200  X01 = IV(X0)
      V(RELDX) = DRLDST(N, D, X, V(X01))
      CALL DA7SST(IV, LIV, LV, V)
      STEP1 = IV(STEP)
      LSTGST = IV(STLSTG)
      I = IV(RESTOR) + 1
      GO TO (240, 210, 220, 230), I
 210  CALL DV7CPY(N, X, V(X01))
      GO TO 240
 220   CALL DV7CPY(N, V(LSTGST), V(STEP1))
       GO TO 240
 230     CALL DV7CPY(N, V(STEP1), V(LSTGST))
       CALL DV2AXY(N, X, ONE, V(STEP1), V(X01))
       V(RELDX) = DRLDST(N, D, X, V(X01))
       IV(RESTOR) = RSTRST
C
 240  K = IV(IRC)
      GO TO (250,280,280,280,250,260,270,270,270,270,270,270,330,300), K
C
C     ***  RECOMPUTE STEP WITH CHANGED RADIUS  ***
C
 250     V(RADIUS) = V(RADFAC) * V(DSTNRM)
       GO TO 110
C
C  ***  COMPUTE STEP OF LENGTH V(LMAXS) FOR SINGULAR CONVERGENCE TEST.
C
 260  V(RADIUS) = V(LMAXS)
      GO TO 150
C
C  ***  CONVERGENCE OR FALSE CONVERGENCE  ***
C
 270  IV(CNVCOD) = K - 4
      IF (V(F) .GE. V(F0)) GO TO 340
       IF (IV(XIRC) .EQ. 14) GO TO 340
            IV(XIRC) = 14
C
C. . . . . . . . . . . .  PROCESS ACCEPTABLE STEP  . . . . . . . . . . .
C
 280  IF (IV(IRC) .NE. 3) GO TO 290
       STEP1 = IV(STEP)
       TEMP1 = IV(STLSTG)
C
C     ***  SET  TEMP1 = HESSIAN * STEP  FOR USE IN GRADIENT TESTS  ***
C
       L = IV(LMAT)
       CALL DL7TVM(N, V(TEMP1), V(L), V(STEP1))
       CALL DL7VML(N, V(TEMP1), V(L), V(TEMP1))
C
C  ***  COMPUTE GRADIENT  ***
C
 290  IV(NGCALL) = IV(NGCALL) + 1
      IV(1) = 2
      GO TO 999
C
C  ***  INITIALIZATIONS -- G0 = G - G0, ETC.  ***
C
 300  G01 = IV(G0)
      CALL DV2AXY(N, V(G01), NEGONE, V(G01), G)
      STEP1 = IV(STEP)
      TEMP1 = IV(STLSTG)
      IF (IV(IRC) .NE. 3) GO TO 320
C
C  ***  SET V(RADFAC) BY GRADIENT TESTS  ***
C
C     ***  SET  TEMP1 = DIAG(D)**-1 * (HESSIAN*STEP + (G(X0)-G(X)))  ***
C
       CALL DV2AXY(N, V(TEMP1), NEGONE, V(G01), V(TEMP1))
       CALL DV7VMP(N, V(TEMP1), V(TEMP1), D, -1)
C
C        ***  DO GRADIENT TESTS  ***
C
       IF (DV2NRM(N, V(TEMP1)) .LE. V(DGNORM) * V(TUNER4))
     1                  GO TO 310
            IF (DD7TPR(N, G, V(STEP1))
     1                  .GE. V(GTSTEP) * V(TUNER5))  GO TO 320
 310               V(RADFAC) = V(INCFAC)
C
C  ***  UPDATE H, LOOP  ***
C
 320  W = IV(NWTSTP)
      Z = IV(X0)
      L = IV(LMAT)
      CALL DW7ZBF(V(L), N, V(STEP1), V(W), V(G01), V(Z))
C
C     ** USE THE N-VECTORS STARTING AT V(STEP1) AND V(G01) FOR SCRATCH..
      CALL DL7UPD(V(TEMP1), V(STEP1), V(L), V(G01), V(L), N, V(W), V(Z))
      IV(1) = 2
      GO TO 80
C
C. . . . . . . . . . . . . .  MISC. DETAILS  . . . . . . . . . . . . . .
C
C  ***  BAD PARAMETERS TO ASSESS  ***
C
 330  IV(1) = 64
      GO TO 350
C
C  ***  PRINT SUMMARY OF FINAL ITERATION AND OTHER REQUESTED ITEMS  ***
C
 340  IV(1) = IV(CNVCOD)
      IV(CNVCOD) = 0
 350  CALL DITSUM(D, G, IV, LIV, LV, N, V, X)
C
 999  RETURN
C
C  ***  LAST LINE OF DRMNG FOLLOWS  ***
      END
      SUBROUTINE I7DO(M,N,INDROW,JPNTR,INDCOL,IPNTR,NDEG,LIST,
     *               MAXCLQ,IWA1,IWA2,IWA3,IWA4,BWA)
      INTEGER M,N,MAXCLQ
      INTEGER INDROW(1),JPNTR(1),INDCOL(1),IPNTR(1),NDEG(N),LIST(N),
     *        IWA1(N),IWA2(N),IWA3(N),IWA4(N)
      LOGICAL BWA(N)
C     **********
C
C     SUBROUTINE I7DO
C
C     GIVEN THE SPARSITY PATTERN OF AN M BY N MATRIX A, THIS
C     SUBROUTINE DETERMINES AN INCIDENCE-DEGREE ORDERING OF THE
C     COLUMNS OF A.
C
C     THE INCIDENCE-DEGREE ORDERING IS DEFINED FOR THE LOOPLESS
C     GRAPH G WITH VERTICES A(J), J = 1,2,...,N WHERE A(J) IS THE
C     J-TH COLUMN OF A AND WITH EDGE (A(I),A(J)) IF AND ONLY IF
C     COLUMNS I AND J HAVE A NON-ZERO IN THE SAME ROW POSITION.
C
C     AT EACH STAGE OF I7DO, A COLUMN OF MAXIMAL INCIDENCE IS
C     CHOSEN AND ORDERED. IF JCOL IS AN UN-ORDERED COLUMN, THEN
C     THE INCIDENCE OF JCOL IS THE NUMBER OF ORDERED COLUMNS
C     ADJACENT TO JCOL IN THE GRAPH G. AMONG ALL THE COLUMNS OF
C     MAXIMAL INCIDENCE,I7DO CHOOSES A COLUMN OF MAXIMAL DEGREE.
C
C     THE SUBROUTINE STATEMENT IS
C
C       SUBROUTINE I7DO(M,N,INDROW,JPNTR,INDCOL,IPNTR,NDEG,LIST,
C                      MAXCLQ,IWA1,IWA2,IWA3,IWA4,BWA)
C
C     WHERE
C
C       M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C         OF ROWS OF A.
C
C       N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C         OF COLUMNS OF A.
C
C       INDROW IS AN INTEGER INPUT ARRAY WHICH CONTAINS THE ROW
C         INDICES FOR THE NON-ZEROES IN THE MATRIX A.
C
C       JPNTR IS AN INTEGER INPUT ARRAY OF LENGTH N + 1 WHICH
C         SPECIFIES THE LOCATIONS OF THE ROW INDICES IN INDROW.
C         THE ROW INDICES FOR COLUMN J ARE
C
C               INDROW(K), K = JPNTR(J),...,JPNTR(J+1)-1.
C
C         NOTE THAT JPNTR(N+1)-1 IS THEN THE NUMBER OF NON-ZERO
C         ELEMENTS OF THE MATRIX A.
C
C       INDCOL IS AN INTEGER INPUT ARRAY WHICH CONTAINS THE
C         COLUMN INDICES FOR THE NON-ZEROES IN THE MATRIX A.
C
C       IPNTR IS AN INTEGER INPUT ARRAY OF LENGTH M + 1 WHICH
C         SPECIFIES THE LOCATIONS OF THE COLUMN INDICES IN INDCOL.
C         THE COLUMN INDICES FOR ROW I ARE
C
C               INDCOL(K), K = IPNTR(I),...,IPNTR(I+1)-1.
C
C         NOTE THAT IPNTR(M+1)-1 IS THEN THE NUMBER OF NON-ZERO
C         ELEMENTS OF THE MATRIX A.
C
C       NDEG IS AN INTEGER INPUT ARRAY OF LENGTH N WHICH SPECIFIES
C         THE DEGREE SEQUENCE. THE DEGREE OF THE J-TH COLUMN
C         OF A IS NDEG(J).
C
C       LIST IS AN INTEGER OUTPUT ARRAY OF LENGTH N WHICH SPECIFIES
C         THE INCIDENCE-DEGREE ORDERING OF THE COLUMNS OF A. THE J-TH
C         COLUMN IN THIS ORDER IS LIST(J).
C
C       MAXCLQ IS AN INTEGER OUTPUT VARIABLE SET TO THE SIZE
C         OF THE LARGEST CLIQUE FOUND DURING THE ORDERING.
C
C       IWA1,IWA2,IWA3, AND IWA4 ARE INTEGER WORK ARRAYS OF LENGTH N.
C
C       BWA IS A LOGICAL WORK ARRAY OF LENGTH N.
C
C     SUBPROGRAMS CALLED
C
C       MINPACK-SUPPLIED ... N7MSRT
C
C       FORTRAN-SUPPLIED ... MAX0
C
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. JUNE 1982.
C     THOMAS F. COLEMAN, BURTON S. GARBOW, JORGE J. MORE
C
C     **********
      INTEGER DEG,HEAD,IC,IP,IPL,IPU,IR,JCOL,JP,JPL,JPU,L,MAXINC,
     *        MAXLST,NCOMP,NUMINC,NUMLST,NUMORD,NUMWGT
C
C     SORT THE DEGREE SEQUENCE.
C
      CALL N7MSRT(N,N-1,NDEG,-1,IWA4,IWA1,IWA3)
C
C     INITIALIZATION BLOCK.
C
C     CREATE A DOUBLY-LINKED LIST TO ACCESS THE INCIDENCES OF THE
C     COLUMNS. THE POINTERS FOR THE LINKED LIST ARE AS FOLLOWS.
C
C     EACH UN-ORDERED COLUMN JCOL IS IN A LIST (THE INCIDENCE LIST)
C     OF COLUMNS WITH THE SAME INCIDENCE.
C
C     IWA1(NUMINC+1) IS THE FIRST COLUMN IN THE NUMINC LIST
C     UNLESS IWA1(NUMINC+1) = 0. IN THIS CASE THERE ARE
C     NO COLUMNS IN THE NUMINC LIST.
C
C     IWA2(JCOL) IS THE COLUMN BEFORE JCOL IN THE INCIDENCE LIST
C     UNLESS IWA2(JCOL) = 0. IN THIS CASE JCOL IS THE FIRST
C     COLUMN IN THIS INCIDENCE LIST.
C
C     IWA3(JCOL) IS THE COLUMN AFTER JCOL IN THE INCIDENCE LIST
C     UNLESS IWA3(JCOL) = 0. IN THIS CASE JCOL IS THE LAST
C     COLUMN IN THIS INCIDENCE LIST.
C
C     IF JCOL IS AN UN-ORDERED COLUMN, THEN LIST(JCOL) IS THE
C     INCIDENCE OF JCOL IN THE GRAPH. IF JCOL IS AN ORDERED COLUMN,
C     THEN LIST(JCOL) IS THE INCIDENCE-DEGREE ORDER OF COLUMN JCOL.
C
      MAXINC = 0
      DO 10 JP = 1, N
       LIST(JP) = 0
       BWA(JP) = .FALSE.
       IWA1(JP) = 0
       L = IWA4(JP)
       IF (JP .NE. 1) IWA2(L) = IWA4(JP-1)
       IF (JP .NE. N) IWA3(L) = IWA4(JP+1)
   10    CONTINUE
      IWA1(1) = IWA4(1)
      L = IWA4(1)
      IWA2(L) = 0
      L = IWA4(N)
      IWA3(L) = 0
C
C     DETERMINE THE MAXIMAL SEARCH LENGTH FOR THE LIST
C     OF COLUMNS OF MAXIMAL INCIDENCE.
C
      MAXLST = 0
      DO 20 IR = 1, M
       MAXLST = MAXLST + (IPNTR(IR+1) - IPNTR(IR))**2
   20    CONTINUE
      MAXLST = MAXLST/N
      MAXCLQ = 1
C
C     BEGINNING OF ITERATION LOOP.
C
      DO 140 NUMORD = 1, N
C
C        CHOOSE A COLUMN JCOL OF MAXIMAL DEGREE AMONG THE
C        COLUMNS OF MAXIMAL INCIDENCE.
C
       JP = IWA1(MAXINC+1)
       NUMLST = 1
       NUMWGT = -1
   30    CONTINUE
          IF (NDEG(JP) .LE. NUMWGT) GO TO 40
          NUMWGT = NDEG(JP)
          JCOL = JP
   40       CONTINUE
          JP = IWA3(JP)
          NUMLST = NUMLST + 1
          IF (JP .GT. 0 .AND. NUMLST .LE. MAXLST) GO TO 30
       LIST(JCOL) = NUMORD
C
C        DELETE COLUMN JCOL FROM THE LIST OF COLUMNS OF
C        MAXIMAL INCIDENCE.
C
       L = IWA2(JCOL)
       IF (L .EQ. 0) IWA1(MAXINC+1) = IWA3(JCOL)
       IF (L .GT. 0) IWA3(L) = IWA3(JCOL)
       L = IWA3(JCOL)
       IF (L .GT. 0) IWA2(L) = IWA2(JCOL)
C
C        UPDATE THE SIZE OF THE LARGEST CLIQUE
C        FOUND DURING THE ORDERING.
C
       IF (MAXINC .EQ. 0) NCOMP = 0
       NCOMP = NCOMP + 1
       IF (MAXINC + 1 .EQ. NCOMP) MAXCLQ = MAX0(MAXCLQ,NCOMP)
C
C        UPDATE THE MAXIMAL INCIDENCE COUNT.
C
   50    CONTINUE
          IF (IWA1(MAXINC+1) .GT. 0) GO TO 60
          MAXINC = MAXINC - 1
          IF (MAXINC .GE. 0) GO TO 50
   60    CONTINUE
C
C        FIND ALL COLUMNS ADJACENT TO COLUMN JCOL.
C
       BWA(JCOL) = .TRUE.
       DEG = 0
C
C        DETERMINE ALL POSITIONS (IR,JCOL) WHICH CORRESPOND
C        TO NON-ZEROES IN THE MATRIX.
C
       JPL = JPNTR(JCOL)
       JPU = JPNTR(JCOL+1) - 1
       IF (JPU .LT. JPL) GO TO 100
       DO 90 JP = JPL, JPU
          IR = INDROW(JP)
C
C           FOR EACH ROW IR, DETERMINE ALL POSITIONS (IR,IC)
C           WHICH CORRESPOND TO NON-ZEROES IN THE MATRIX.
C
          IPL = IPNTR(IR)
          IPU = IPNTR(IR+1) - 1
          DO 80 IP = IPL, IPU
             IC = INDCOL(IP)
C
C              ARRAY BWA MARKS COLUMNS WHICH ARE ADJACENT TO
C              COLUMN JCOL. ARRAY IWA4 RECORDS THE MARKED COLUMNS.
C
             IF (BWA(IC)) GO TO 70
             BWA(IC) = .TRUE.
             DEG = DEG + 1
             IWA4(DEG) = IC
   70          CONTINUE
   80          CONTINUE
   90       CONTINUE
  100    CONTINUE
C
C        UPDATE THE POINTERS TO THE INCIDENCE LISTS.
C
       IF (DEG .LT. 1) GO TO 130
       DO 120 JP = 1, DEG
          IC = IWA4(JP)
          IF (LIST(IC) .GT. 0) GO TO 110
          NUMINC = -LIST(IC) + 1
          LIST(IC) = -NUMINC
          MAXINC = MAX0(MAXINC,NUMINC)
C
C           DELETE COLUMN IC FROM THE NUMINC-1 LIST.
C
          L = IWA2(IC)
          IF (L .EQ. 0) IWA1(NUMINC) = IWA3(IC)
          IF (L .GT. 0) IWA3(L) = IWA3(IC)
          L = IWA3(IC)
          IF (L .GT. 0) IWA2(L) = IWA2(IC)
C
C           ADD COLUMN IC TO THE NUMINC LIST.
C
          HEAD = IWA1(NUMINC+1)
          IWA1(NUMINC+1) = IC
          IWA2(IC) = 0
          IWA3(IC) = HEAD
          IF (HEAD .GT. 0) IWA2(HEAD) = IC
  110       CONTINUE
C
C           UN-MARK COLUMN IC IN THE ARRAY BWA.
C
          BWA(IC) = .FALSE.
  120       CONTINUE
  130    CONTINUE
       BWA(JCOL) = .FALSE.
C
C        END OF ITERATION LOOP.
C
  140    CONTINUE
C
C     INVERT THE ARRAY LIST.
C
      DO 150 JCOL = 1, N
       NUMORD = LIST(JCOL)
       IWA1(NUMORD) = JCOL
  150    CONTINUE
      DO 160 JP = 1, N
       LIST(JP) = IWA1(JP)
  160    CONTINUE
      RETURN
C
C     LAST CARD OF SUBROUTINE I7DO.
C
      END
      SUBROUTINE M7SLO(N,INDROW,JPNTR,INDCOL,IPNTR,NDEG,LIST,
     *               MAXCLQ,IWA1,IWA2,IWA3,IWA4,BWA)
      INTEGER N,MAXCLQ
      INTEGER INDROW(1),JPNTR(1),INDCOL(1),IPNTR(1),NDEG(N),
     *        LIST(N),IWA1(N),IWA2(N),IWA3(N),IWA4(N)
      LOGICAL BWA(N)
C     **********
C
C     SUBROUTINE M7SLO
C
C     GIVEN THE SPARSITY PATTERN OF AN M BY N MATRIX A, THIS
C     SUBROUTINE DETERMINES THE SMALLEST-LAST ORDERING OF THE
C     COLUMNS OF A.
C
C     THE SMALLEST-LAST ORDERING IS DEFINED FOR THE LOOPLESS
C     GRAPH G WITH VERTICES A(J), J = 1,2,...,N WHERE A(J) IS THE
C     J-TH COLUMN OF A AND WITH EDGE (A(I),A(J)) IF AND ONLY IF
C     COLUMNS I AND J HAVE A NON-ZERO IN THE SAME ROW POSITION.
C
C     THE SMALLEST-LAST ORDERING IS DETERMINED RECURSIVELY BY
C     LETTING LIST(K), K = N,...,1 BE A COLUMN WITH LEAST DEGREE
C     IN THE SUBGRAPH SPANNED BY THE UN-ORDERED COLUMNS.
C
C     NOTE THAT THE VALUE OF M IS NOT NEEDED BY M7SLO AND IS
C     THEREFORE NOT PRESENT IN THE SUBROUTINE STATEMENT.
C
C     THE SUBROUTINE STATEMENT IS
C
C       SUBROUTINE M7SLO(N,INDROW,JPNTR,INDCOL,IPNTR,NDEG,LIST,
C                      MAXCLQ,IWA1,IWA2,IWA3,IWA4,BWA)
C
C     WHERE
C
C       N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C         OF COLUMNS OF A.
C
C       INDROW IS AN INTEGER INPUT ARRAY WHICH CONTAINS THE ROW
C         INDICES FOR THE NON-ZEROES IN THE MATRIX A.
C
C       JPNTR IS AN INTEGER INPUT ARRAY OF LENGTH N + 1 WHICH
C         SPECIFIES THE LOCATIONS OF THE ROW INDICES IN INDROW.
C         THE ROW INDICES FOR COLUMN J ARE
C
C               INDROW(K), K = JPNTR(J),...,JPNTR(J+1)-1.
C
C         NOTE THAT JPNTR(N+1)-1 IS THEN THE NUMBER OF NON-ZERO
C         ELEMENTS OF THE MATRIX A.
C
C       INDCOL IS AN INTEGER INPUT ARRAY WHICH CONTAINS THE
C         COLUMN INDICES FOR THE NON-ZEROES IN THE MATRIX A.
C
C       IPNTR IS AN INTEGER INPUT ARRAY OF LENGTH M + 1 WHICH
C         SPECIFIES THE LOCATIONS OF THE COLUMN INDICES IN INDCOL.
C         THE COLUMN INDICES FOR ROW I ARE
C
C               INDCOL(K), K = IPNTR(I),...,IPNTR(I+1)-1.
C
C         NOTE THAT IPNTR(M+1)-1 IS THEN THE NUMBER OF NON-ZERO
C         ELEMENTS OF THE MATRIX A.
C
C       NDEG IS AN INTEGER INPUT ARRAY OF LENGTH N WHICH SPECIFIES
C         THE DEGREE SEQUENCE. THE DEGREE OF THE J-TH COLUMN
C         OF A IS NDEG(J).
C
C       LIST IS AN INTEGER OUTPUT ARRAY OF LENGTH N WHICH SPECIFIES
C         THE SMALLEST-LAST ORDERING OF THE COLUMNS OF A. THE J-TH
C         COLUMN IN THIS ORDER IS LIST(J).
C
C       MAXCLQ IS AN INTEGER OUTPUT VARIABLE SET TO THE SIZE
C         OF THE LARGEST CLIQUE FOUND DURING THE ORDERING.
C
C       IWA1,IWA2,IWA3, AND IWA4 ARE INTEGER WORK ARRAYS OF LENGTH N.
C
C       BWA IS A LOGICAL WORK ARRAY OF LENGTH N.
C
C     SUBPROGRAMS CALLED
C
C       FORTRAN-SUPPLIED ... MIN0
C
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. JUNE 1982.
C     THOMAS F. COLEMAN, BURTON S. GARBOW, JORGE J. MORE
C
C     **********
      INTEGER DEG,HEAD,IC,IP,IPL,IPU,IR,JCOL,JP,JPL,JPU,
     *        L,MINDEG,NUMDEG,NUMORD
C
C     INITIALIZATION BLOCK.
C
      MINDEG = N
      DO 10 JP = 1, N
       IWA1(JP) = 0
       BWA(JP) = .FALSE.
       LIST(JP) = NDEG(JP)
       MINDEG = MIN0(MINDEG,NDEG(JP))
   10    CONTINUE
C
C     CREATE A DOUBLY-LINKED LIST TO ACCESS THE DEGREES OF THE
C     COLUMNS. THE POINTERS FOR THE LINKED LIST ARE AS FOLLOWS.
C
C     EACH UN-ORDERED COLUMN JCOL IS IN A LIST (THE DEGREE
C     LIST) OF COLUMNS WITH THE SAME DEGREE.
C
C     IWA1(NUMDEG+1) IS THE FIRST COLUMN IN THE NUMDEG LIST
C     UNLESS IWA1(NUMDEG+1) = 0. IN THIS CASE THERE ARE
C     NO COLUMNS IN THE NUMDEG LIST.
C
C     IWA2(JCOL) IS THE COLUMN BEFORE JCOL IN THE DEGREE LIST
C     UNLESS IWA2(JCOL) = 0. IN THIS CASE JCOL IS THE FIRST
C     COLUMN IN THIS DEGREE LIST.
C
C     IWA3(JCOL) IS THE COLUMN AFTER JCOL IN THE DEGREE LIST
C     UNLESS IWA3(JCOL) = 0. IN THIS CASE JCOL IS THE LAST
C     COLUMN IN THIS DEGREE LIST.
C
C     IF JCOL IS AN UN-ORDERED COLUMN, THEN LIST(JCOL) IS THE
C     DEGREE OF JCOL IN THE GRAPH INDUCED BY THE UN-ORDERED
C     COLUMNS. IF JCOL IS AN ORDERED COLUMN, THEN LIST(JCOL)
C     IS THE SMALLEST-LAST ORDER OF COLUMN JCOL.
C
      DO 20 JP = 1, N
       NUMDEG = NDEG(JP)
       HEAD = IWA1(NUMDEG+1)
       IWA1(NUMDEG+1) = JP
       IWA2(JP) = 0
       IWA3(JP) = HEAD
       IF (HEAD .GT. 0) IWA2(HEAD) = JP
   20    CONTINUE
      MAXCLQ = 0
      NUMORD = N
C
C     BEGINNING OF ITERATION LOOP.
C
   30 CONTINUE
C
C        MARK THE SIZE OF THE LARGEST CLIQUE
C        FOUND DURING THE ORDERING.
C
       IF (MINDEG + 1 .EQ. NUMORD .AND. MAXCLQ .EQ. 0)
     *       MAXCLQ = NUMORD
C
C        CHOOSE A COLUMN JCOL OF MINIMAL DEGREE MINDEG.
C
   40    CONTINUE
          JCOL = IWA1(MINDEG+1)
          IF (JCOL .GT. 0) GO TO 50
          MINDEG = MINDEG + 1
          GO TO 40
   50    CONTINUE
       LIST(JCOL) = NUMORD
       NUMORD = NUMORD - 1
C
C        TERMINATION TEST.
C
       IF (NUMORD .EQ. 0) GO TO 120
C
C        DELETE COLUMN JCOL FROM THE MINDEG LIST.
C
       L = IWA3(JCOL)
       IWA1(MINDEG+1) = L
       IF (L .GT. 0) IWA2(L) = 0
C
C        FIND ALL COLUMNS ADJACENT TO COLUMN JCOL.
C
       BWA(JCOL) = .TRUE.
       DEG = 0
C
C        DETERMINE ALL POSITIONS (IR,JCOL) WHICH CORRESPOND
C        TO NON-ZEROES IN THE MATRIX.
C
       JPL = JPNTR(JCOL)
       JPU = JPNTR(JCOL+1) - 1
       IF (JPU .LT. JPL) GO TO 90
       DO 80 JP = JPL, JPU
          IR = INDROW(JP)
C
C           FOR EACH ROW IR, DETERMINE ALL POSITIONS (IR,IC)
C           WHICH CORRESPOND TO NON-ZEROES IN THE MATRIX.
C
          IPL = IPNTR(IR)
          IPU = IPNTR(IR+1) - 1
          DO 70 IP = IPL, IPU
             IC = INDCOL(IP)
C
C              ARRAY BWA MARKS COLUMNS WHICH ARE ADJACENT TO
C              COLUMN JCOL. ARRAY IWA4 RECORDS THE MARKED COLUMNS.
C
             IF (BWA(IC)) GO TO 60
             BWA(IC) = .TRUE.
             DEG = DEG + 1
             IWA4(DEG) = IC
   60          CONTINUE
   70          CONTINUE
   80       CONTINUE
   90    CONTINUE
C
C        UPDATE THE POINTERS TO THE CURRENT DEGREE LISTS.
C
       IF (DEG .LT. 1) GO TO 110
       DO 100 JP = 1, DEG
          IC = IWA4(JP)
          NUMDEG = LIST(IC)
          LIST(IC) = LIST(IC) - 1
          MINDEG = MIN0(MINDEG,LIST(IC))
C
C           DELETE COLUMN IC FROM THE NUMDEG LIST.
C
          L = IWA2(IC)
          IF (L .EQ. 0) IWA1(NUMDEG+1) = IWA3(IC)
          IF (L .GT. 0) IWA3(L) = IWA3(IC)
          L = IWA3(IC)
          IF (L .GT. 0) IWA2(L) = IWA2(IC)
C
C           ADD COLUMN IC TO THE NUMDEG-1 LIST.
C
          HEAD = IWA1(NUMDEG)
          IWA1(NUMDEG) = IC
          IWA2(IC) = 0
          IWA3(IC) = HEAD
          IF (HEAD .GT. 0) IWA2(HEAD) = IC
C
C           UN-MARK COLUMN IC IN THE ARRAY BWA.
C
          BWA(IC) = .FALSE.
  100       CONTINUE
  110    CONTINUE
C
C        END OF ITERATION LOOP.
C
       GO TO 30
  120 CONTINUE
C
C     INVERT THE ARRAY LIST.
C
      DO 130 JCOL = 1, N
       NUMORD = LIST(JCOL)
       IWA1(NUMORD) = JCOL
  130    CONTINUE
      DO 140 JP = 1, N
       LIST(JP) = IWA1(JP)
  140    CONTINUE
      RETURN
C
C     LAST CARD OF SUBROUTINE M7SLO.
C
      END
      SUBROUTINE DS7DMP(N, X, Y, Z, K)
C
C ***  SET X = DIAG(Z)**K * Y * DIAG(Z)**K
C ***  FOR X, Y = COMPACTLY STORED LOWER TRIANG. MATRICES
C ***  K = 1 OR -1.
C
      INTEGER N, K
      DOUBLE PRECISION X(*), Y(*), Z(N)
      INTEGER I, J, L
      DOUBLE PRECISION ONE, T
      DATA ONE/1.D+0/
C
      L = 1
      IF (K .GE. 0) GO TO 30
      DO 20 I = 1, N
       T = ONE / Z(I)
       DO 10 J = 1, I
          X(L) = T * Y(L) / Z(J)
          L = L + 1
 10         CONTINUE
 20      CONTINUE
      GO TO 999
C
 30   DO 50 I = 1, N
       T = Z(I)
       DO 40 J = 1, I
          X(L) = T * Y(L) * Z(J)
          L = L + 1
 40         CONTINUE
 50      CONTINUE
 999  RETURN
C  ***  LAST CARD OF DS7DMP FOLLOWS  ***
      END
      SUBROUTINE DS7BQN(B, D, DST, IPIV, IPIV1, IPIV2, KB, L, LV, NS,
     1                  P, P1, STEP, TD, TG, V, W, X, X0)
C
C  ***  COMPUTE BOUNDED MODIFIED NEWTON STEP  ***
C
      INTEGER KB, LV, NS, P, P1
      INTEGER IPIV(P), IPIV1(P), IPIV2(P)
      DOUBLE PRECISION B(2,P), D(P), DST(P), L(1),
     1                 STEP(P), TD(P), TG(P), V(LV), W(P), X(P),
     2                 X0(P)
C     DIMENSION L(P*(P+1)/2)
C
      DOUBLE PRECISION DD7TPR, DR7MDC, DV2NRM
      EXTERNAL DD7TPR, I7SHFT, DL7ITV, DL7IVM, DQ7RSH, DR7MDC, DV2NRM,
     1        DV2AXY,DV7CPY, DV7IPR, DV7SCP, DV7SHF
C
C  ***  LOCAL VARIABLES  ***
C
      INTEGER I, J, K, P0, P1M1
      DOUBLE PRECISION ALPHA, DST0, DST1, DSTMAX, DSTMIN, DX, GTS, T,
     1                 TI, T1, XI
      DOUBLE PRECISION FUDGE, HALF, MEPS2, ONE, TWO, ZERO
C
C  ***  V SUBSCRIPTS  ***
C
      INTEGER DSTNRM, GTSTEP, PHMNFC, PHMXFC, PREDUC, RADIUS, STPPAR
C
      PARAMETER (DSTNRM=2, GTSTEP=4, PHMNFC=20, PHMXFC=21, PREDUC=7,
     1           RADIUS=8, STPPAR=5)
      SAVE MEPS2
C
      DATA FUDGE/1.0001D+0/, HALF/0.5D+0/, MEPS2/0.D+0/,
     1     ONE/1.0D+0/, TWO/2.D+0/, ZERO/0.D+0/
C
C+++++++++++++++++++++++++++++++  BODY  ++++++++++++++++++++++++++++++++
C
      DSTMAX = FUDGE * (ONE + V(PHMXFC)) * V(RADIUS)
      DSTMIN = (ONE + V(PHMNFC)) * V(RADIUS)
      DST1 = ZERO
      IF (MEPS2 .LE. ZERO) MEPS2 = TWO * DR7MDC(3)
      P0 = P1
      NS = 0
      DO 10 I = 1, P
       IPIV1(I) = I
       IPIV2(I) = I
 10      CONTINUE
      DO 20 I = 1, P1
 20      W(I) = -STEP(I) * TD(I)
      ALPHA = DABS(V(STPPAR))
      V(PREDUC) = ZERO
      GTS = -V(GTSTEP)
      IF (KB .LT. 0) CALL DV7SCP(P, DST, ZERO)
      KB = 1
C
C     ***  -W = D TIMES RESTRICTED NEWTON STEP FROM X + DST/D.
C
C     ***  FIND T SUCH THAT X - T*W IS STILL FEASIBLE.
C
 30   T = ONE
      K = 0
      DO 60 I = 1, P1
       J = IPIV(I)
       DX = W(I) / D(J)
       XI = X(J) - DX
       IF (XI .LT. B(1,J)) GO TO 40
       IF (XI .LE. B(2,J)) GO TO 60
            TI = ( X(J)  -  B(2,J) ) / DX
            K = I
            GO TO 50
 40      TI = ( X(J)  -  B(1,J) ) / DX
            K = -I
 50      IF (T .LE. TI) GO TO 60
            T = TI
 60      CONTINUE
C
      IF (P .GT. P1) CALL DV7CPY(P-P1, STEP(P1+1), DST(P1+1))
      CALL DV2AXY(P1, STEP, -T, W, DST)
      DST0 = DST1
      DST1 = DV2NRM(P, STEP)
C
C  ***  CHECK FOR OVERSIZE STEP  ***
C
      IF (DST1 .LE. DSTMAX) GO TO 80
      IF (P1 .GE. P0) GO TO 70
       IF (DST0 .LT. DSTMIN) KB = 0
       GO TO 110
C
 70   K = 0
C
C  ***  UPDATE DST, TG, AND V(PREDUC)  ***
C
 80   V(DSTNRM) = DST1
      CALL DV7CPY(P1, DST, STEP)
      T1 = ONE - T
      DO 90 I = 1, P1
 90      TG(I) = T1 * TG(I)
      IF (ALPHA .GT. ZERO) CALL DV2AXY(P1, TG, T*ALPHA, W, TG)
      V(PREDUC) = V(PREDUC) + T*((ONE - HALF*T)*GTS +
     1                        HALF*ALPHA*T*DD7TPR(P1,W,W))
      IF (K .EQ. 0) GO TO 110
C
C     ***  PERMUTE L, ETC. IF NECESSARY  ***
C
      P1M1 = P1 - 1
      J = IABS(K)
      IF (J .EQ. P1) GO TO 100
       NS = NS + 1
       IPIV2(P1) = J
       CALL DQ7RSH(J, P1, .FALSE., TG, L, W)
       CALL I7SHFT(P1, J, IPIV)
       CALL I7SHFT(P1, J, IPIV1)
       CALL DV7SHF(P1, J, TG)
       CALL DV7SHF(P1, J, DST)
 100  IF (K .LT. 0) IPIV(P1) = -IPIV(P1)
      P1 = P1M1
      IF (P1 .LE. 0) GO TO 110
      CALL DL7IVM(P1, W, L, TG)
      GTS = DD7TPR(P1, W, W)
      CALL DL7ITV(P1, W, L, W)
      GO TO 30
C
C     ***  UNSCALE STEP  ***
C
 110  DO 120 I = 1, P
       J = IABS(IPIV(I))
       STEP(J) = DST(I) / D(J)
 120     CONTINUE
C
C  ***  FUDGE STEP TO ENSURE THAT IT FORCES APPROPRIATE COMPONENTS
C  ***  TO THEIR BOUNDS  ***
C
      IF (P1 .GE. P0) GO TO 150
      K = P1 + 1
      DO 140 I = K, P0
       J = IPIV(I)
       T = MEPS2
       IF (J .GT. 0) GO TO 130
          T = -T
          J = -J
          IPIV(I) = J
 130     T = T * DMAX1(DABS(X(J)), DABS(X0(J)))
       STEP(J) = STEP(J) + T
 140     CONTINUE
C
 150  CALL DV2AXY(P, X, ONE, STEP, X0)
      IF (NS .GT. 0) CALL DV7IPR(P0, IPIV1, TD)
      RETURN
C  ***  LAST LINE OF DS7BQN FOLLOWS  ***
      END
      SUBROUTINE N7MSRT(N,NMAX,NUM,MODE,INDEX,LAST,NEXT)
      INTEGER N,NMAX,MODE
      INTEGER NUM(N),INDEX(N),LAST(1),NEXT(N)
C     **********.
C
C     SUBROUTINE N7MSRT
C
C     GIVEN A SEQUENCE OF INTEGERS, THIS SUBROUTINE GROUPS
C     TOGETHER THOSE INDICES WITH THE SAME SEQUENCE VALUE
C     AND, OPTIONALLY, SORTS THE SEQUENCE INTO EITHER
C     ASCENDING OR DESCENDING ORDER.
C
C     THE SEQUENCE OF INTEGERS IS DEFINED BY THE ARRAY NUM,
C     AND IT IS ASSUMED THAT THE INTEGERS ARE EACH FROM THE SET
C     0,1,...,NMAX. ON OUTPUT THE INDICES K SUCH THAT NUM(K) = L
C     FOR ANY L = 0,1,...,NMAX CAN BE OBTAINED FROM THE ARRAYS
C     LAST AND NEXT AS FOLLOWS.
C
C           K = LAST(L+1)
C           WHILE (K .NE. 0) K = NEXT(K)
C
C     OPTIONALLY, THE SUBROUTINE PRODUCES AN ARRAY INDEX SO THAT
C     THE SEQUENCE NUM(INDEX(I)), I = 1,2,...,N IS SORTED.
C
C     THE SUBROUTINE STATEMENT IS
C
C       SUBROUTINE N7MSRT(N,NMAX,NUM,MODE,INDEX,LAST,NEXT)
C
C     WHERE
C
C       N IS A POSITIVE INTEGER INPUT VARIABLE.
C
C       NMAX IS A POSITIVE INTEGER INPUT VARIABLE.
C
C       NUM IS AN INPUT ARRAY OF LENGTH N WHICH CONTAINS THE
C         SEQUENCE OF INTEGERS TO BE GROUPED AND SORTED. IT
C         IS ASSUMED THAT THE INTEGERS ARE EACH FROM THE SET
C         0,1,...,NMAX.
C
C       MODE IS AN INTEGER INPUT VARIABLE. THE SEQUENCE NUM IS
C         SORTED IN ASCENDING ORDER IF MODE IS POSITIVE AND IN
C         DESCENDING ORDER IF MODE IS NEGATIVE. IF MODE IS 0,
C         NO SORTING IS DONE.
C
C       INDEX IS AN INTEGER OUTPUT ARRAY OF LENGTH N SET SO
C         THAT THE SEQUENCE
C
C               NUM(INDEX(I)), I = 1,2,...,N
C
C         IS SORTED ACCORDING TO THE SETTING OF MODE. IF MODE
C         IS 0, INDEX IS NOT REFERENCED.
C
C       LAST IS AN INTEGER OUTPUT ARRAY OF LENGTH NMAX + 1. THE
C         INDEX OF NUM FOR THE LAST OCCURRENCE OF L IS LAST(L+1)
C         FOR ANY L = 0,1,...,NMAX UNLESS LAST(L+1) = 0. IN
C         THIS CASE L DOES NOT APPEAR IN NUM.
C
C       NEXT IS AN INTEGER OUTPUT ARRAY OF LENGTH N. IF
C         NUM(K) = L, THEN THE INDEX OF NUM FOR THE PREVIOUS
C         OCCURRENCE OF L IS NEXT(K) FOR ANY L = 0,1,...,NMAX
C         UNLESS NEXT(K) = 0. IN THIS CASE THERE IS NO PREVIOUS
C         OCCURRENCE OF L IN NUM.
C
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. JUNE 1982.
C     THOMAS F. COLEMAN, BURTON S. GARBOW, JORGE J. MORE
C
C     **********
      INTEGER I,J,JP,K,L,NMAXP1,NMAXP2
C
C     DETERMINE THE ARRAYS NEXT AND LAST.
C
      NMAXP1 = NMAX + 1
      DO 10 I = 1, NMAXP1
       LAST(I) = 0
   10    CONTINUE
      DO 20 K = 1, N
       L = NUM(K)
       NEXT(K) = LAST(L+1)
       LAST(L+1) = K
   20    CONTINUE
      IF (MODE .EQ. 0) GO TO 60
C
C     STORE THE POINTERS TO THE SORTED ARRAY IN INDEX.
C
      I = 1
      NMAXP2 = NMAXP1 + 1
      DO 50 J = 1, NMAXP1
       JP = J
       IF (MODE .LT. 0) JP = NMAXP2 - J
       K = LAST(JP)
   30    CONTINUE
          IF (K .EQ. 0) GO TO 40
          INDEX(I) = K
          I = I + 1
          K = NEXT(K)
          GO TO 30
   40    CONTINUE
   50    CONTINUE
   60 CONTINUE
      RETURN
C
C     LAST CARD OF SUBROUTINE N7MSRT.
C
      END
      SUBROUTINE DG7LIT(D, G, IV, LIV, LV, P, PS, V, X, Y)
C
C  ***  CARRY OUT NL2SOL-LIKE ITERATIONS FOR GENERALIZED LINEAR   ***
C  ***  REGRESSION PROBLEMS (AND OTHERS OF SIMILAR STRUCTURE)     ***
C
C  ***  PARAMETER DECLARATIONS  ***
C
      INTEGER LIV, LV, P, PS
      INTEGER IV(LIV)
      DOUBLE PRECISION D(P), G(P), V(LV), X(P), Y(P)
C
C--------------------------  PARAMETER USAGE  --------------------------
C
C D.... SCALE VECTOR.
C IV... INTEGER VALUE ARRAY.
C LIV.. LENGTH OF IV.  MUST BE AT LEAST 82.
C LH... LENGTH OF H = P*(P+1)/2.
C LV... LENGTH OF V.  MUST BE AT LEAST P*(3*P + 19)/2 + 7.
C G.... GRADIENT AT X (WHEN IV(1) = 2).
C P.... NUMBER OF PARAMETERS (COMPONENTS IN X).
C PS... NUMBER OF NONZERO ROWS AND COLUMNS IN S.
C V.... FLOATING-POINT VALUE ARRAY.
C X.... PARAMETER VECTOR.
C Y.... PART OF YIELD VECTOR (WHEN IV(1)= 2, SCRATCH OTHERWISE).
C
C  ***  DISCUSSION  ***
C
C       DG7LIT PERFORMS NL2SOL-LIKE ITERATIONS FOR A VARIETY OF
C     REGRESSION PROBLEMS THAT ARE SIMILAR TO NONLINEAR LEAST-SQUARES
C     IN THAT THE HESSIAN IS THE SUM OF TWO TERMS, A READILY-COMPUTED
C     FIRST-ORDER TERM AND A SECOND-ORDER TERM.  THE CALLER SUPPLIES
C     THE FIRST-ORDER TERM OF THE HESSIAN IN HC (LOWER TRIANGLE, STORED
C     COMPACTLY BY ROWS IN V, STARTING AT IV(HC)), AND DG7LIT BUILDS AN
C     APPROXIMATION, S, TO THE SECOND-ORDER TERM.  THE CALLER ALSO
C     PROVIDES THE FUNCTION VALUE, GRADIENT, AND PART OF THE YIELD
C     VECTOR USED IN UPDATING S. DG7LIT DECIDES DYNAMICALLY WHETHER OR
C     NOT TO USE S WHEN CHOOSING THE NEXT STEP TO TRY...  THE HESSIAN
C     APPROXIMATION USED IS EITHER HC ALONE (GAUSS-NEWTON MODEL) OR
C     HC + S (AUGMENTED MODEL).
C
C        IF PS .LT. P, THEN ROWS AND COLUMNS PS+1...P OF S ARE KEPT
C     CONSTANT.  THEY WILL BE ZERO UNLESS THE CALLER SETS IV(INITS) TO
C     1 OR 2 AND SUPPLIES NONZERO VALUES FOR THEM, OR THE CALLER SETS
C     IV(INITS) TO 3 OR 4 AND THE FINITE-DIFFERENCE INITIAL S THEN
C     COMPUTED HAS NONZERO VALUES IN THESE ROWS.
C
C        IF IV(INITS) IS 3 OR 4, THEN THE INITIAL S IS COMPUTED BY
C     FINITE DIFFERENCES.  3 MEANS USE FUNCTION DIFFERENCES, 4 MEANS
C     USE GRADIENT DIFFERENCES.  FINITE DIFFERENCING IS DONE THE SAME
C     WAY AS IN COMPUTING A COVARIANCE MATRIX (WITH IV(COVREQ) = -1, -2,
C     1, OR 2).
C
C        FOR UPDATING S,DG7LIT ASSUMES THAT THE GRADIENT HAS THE FORM
C     OF A SUM OVER I OF RHO(I,X)*GRAD(R(I,X)), WHERE GRAD DENOTES THE
C     GRADIENT WITH RESPECT TO X.  THE TRUE SECOND-ORDER TERM THEN IS
C     THE SUM OVER I OF RHO(I,X)*HESSIAN(R(I,X)).  IF X = X0 + STEP,
C     THEN WE WISH TO UPDATE S SO THAT S*STEP IS THE SUM OVER I OF
C     RHO(I,X)*(GRAD(R(I,X)) - GRAD(R(I,X0))).  THE CALLER MUST SUPPLY
C     PART OF THIS IN Y, NAMELY THE SUM OVER I OF
C     RHO(I,X)*GRAD(R(I,X0)), WHEN CALLING DG7LIT WITH IV(1) = 2 AND
C     IV(MODE) = 0 (WHERE MODE = 38).  G THEN CONTANS THE OTHER PART,
C     SO THAT THE DESIRED YIELD VECTOR IS G - Y.  IF PS .LT. P, THEN
C     THE ABOVE DISCUSSION APPLIES ONLY TO THE FIRST PS COMPONENTS OF
C     GRAD(R(I,X)), STEP, AND Y.
C
C        PARAMETERS IV, P, V, AND X ARE THE SAME AS THE CORRESPONDING
C     ONES TO NL2SOL (WHICH SEE), EXCEPT THAT V CAN BE SHORTER
C     (SINCE THE PART OF V THAT NL2SOL USES FOR STORING D, J, AND R IS
C     NOT NEEDED).  MOREOVER, COMPARED WITH NL2SOL, IV(1) MAY HAVE THE
C     TWO ADDITIONAL OUTPUT VALUES 1 AND 2, WHICH ARE EXPLAINED BELOW,
C     AS IS THE USE OF IV(TOOBIG) AND IV(NFGCAL).  THE VALUES IV(D),
C     IV(J), AND IV(R), WHICH ARE OUTPUT VALUES FROM NL2SOL (AND
C     NL2SNO), ARE NOT REFERENCED BY DG7LIT OR THE SUBROUTINES IT CALLS.
C
C        WHEN DG7LIT IS FIRST CALLED, I.E., WHEN DG7LIT IS CALLED WITH
C     IV(1) = 0 OR 12, V(F), G, AND HC NEED NOT BE INITIALIZED.  TO
C     OBTAIN THESE STARTING VALUES,DG7LIT RETURNS FIRST WITH IV(1) = 1,
C     THEN WITH IV(1) = 2, WITH IV(MODE) = -1 IN BOTH CASES.  ON
C     SUBSEQUENT RETURNS WITH IV(1) = 2, IV(MODE) = 0 IMPLIES THAT
C     Y MUST ALSO BE SUPPLIED.  (NOTE THAT Y IS USED FOR SCRATCH -- ITS
C     INPUT CONTENTS ARE LOST.  BY CONTRAST, HC IS NEVER CHANGED.)
C     ONCE CONVERGENCE HAS BEEN OBTAINED, IV(RDREQ) AND IV(COVREQ) MAY
C     IMPLY THAT A FINITE-DIFFERENCE HESSIAN SHOULD BE COMPUTED FOR USE
C     IN COMPUTING A COVARIANCE MATRIX.  IN THIS CASE DG7LIT WILL MAKE A
C     NUMBER OF RETURNS WITH IV(1) = 1 OR 2 AND IV(MODE) POSITIVE.
C     WHEN IV(MODE) IS POSITIVE, Y SHOULD NOT BE CHANGED.
C
C IV(1) = 1 MEANS THE CALLER SHOULD SET V(F) (I.E., V(10)) TO F(X), THE
C             FUNCTION VALUE AT X, AND CALL DG7LIT AGAIN, HAVING CHANGED
C             NONE OF THE OTHER PARAMETERS.  AN EXCEPTION OCCURS IF F(X)
C             CANNOT BE EVALUATED (E.G. IF OVERFLOW WOULD OCCUR), WHICH
C             MAY HAPPEN BECAUSE OF AN OVERSIZED STEP.  IN THIS CASE
C             THE CALLER SHOULD SET IV(TOOBIG) = IV(2) TO 1, WHICH WILL
C             CAUSE DG7LIT TO IGNORE V(F) AND TRY A SMALLER STEP.  NOTE
C             THAT THE CURRENT FUNCTION EVALUATION COUNT IS AVAILABLE
C             IN IV(NFCALL) = IV(6).  THIS MAY BE USED TO IDENTIFY
C             WHICH COPY OF SAVED INFORMATION SHOULD BE USED IN COM-
C             PUTING G, HC, AND Y THE NEXT TIME DG7LIT RETURNS WITH
C             IV(1) = 2.  SEE MLPIT FOR AN EXAMPLE OF THIS.
C IV(1) = 2 MEANS THE CALLER SHOULD SET G TO G(X), THE GRADIENT OF F AT
C             X.  THE CALLER SHOULD ALSO SET HC TO THE GAUSS-NEWTON
C             HESSIAN AT X.  IF IV(MODE) = 0, THEN THE CALLER SHOULD
C             ALSO COMPUTE THE PART OF THE YIELD VECTOR DESCRIBED ABOVE.
C             THE CALLER SHOULD THEN CALL DG7LIT AGAIN (WITH IV(1) = 2).
C             THE CALLER MAY ALSO CHANGE D AT THIS TIME, BUT SHOULD NOT
C             CHANGE X.  NOTE THAT IV(NFGCAL) = IV(7) CONTAINS THE
C             VALUE THAT IV(NFCALL) HAD DURING THE RETURN WITH
C             IV(1) = 1 IN WHICH X HAD THE SAME VALUE AS IT NOW HAS.
C             IV(NFGCAL) IS EITHER IV(NFCALL) OR IV(NFCALL) - 1.  MLPIT
C             IS AN EXAMPLE WHERE THIS INFORMATION IS USED.  IF G OR HC
C             CANNOT BE EVALUATED AT X, THEN THE CALLER MAY SET
C             IV(TOOBIG) TO 1, IN WHICH CASE DG7LIT WILL RETURN WITH
C             IV(1) = 15.
C
C  ***  GENERAL  ***
C
C     CODED BY DAVID M. GAY.
C     THIS SUBROUTINE WAS WRITTEN IN CONNECTION WITH RESEARCH
C     SUPPORTED IN PART BY D.O.E. GRANT EX-76-A-01-2295 TO MIT/CCREMS.
C
C        (SEE NL2SOL FOR REFERENCES.)
C
C+++++++++++++++++++++++++++  DECLARATIONS  ++++++++++++++++++++++++++++
C
C  ***  LOCAL VARIABLES  ***
C
      INTEGER DUMMY, DIG1, G01, H1, HC1, I, IPIV1, J, K, L, LMAT1,
     1        LSTGST, PP1O2, QTR1, RMAT1, RSTRST, STEP1, STPMOD, S1,
     2        TEMP1, TEMP2, W1, X01
      DOUBLE PRECISION E, STTSST, T, T1
C
C     ***  CONSTANTS  ***
C
      DOUBLE PRECISION HALF, NEGONE, ONE, ONEP2, ZERO
C
C  ***  EXTERNAL FUNCTIONS AND SUBROUTINES  ***
C
      LOGICAL STOPX
      DOUBLE PRECISION DD7TPR, DL7SVX, DL7SVN, DRLDST, DR7MDC, DV2NRM
      EXTERNAL DA7SST, DD7TPR,DF7HES,DG7QTS,DITSUM, DL7MST,DL7SRT,
     1         DL7SQR, DL7SVX, DL7SVN, DL7TVM,DL7VML,DPARCK, DRLDST,
     2         DR7MDC, DS7LUP, DS7LVM, STOPX,DV2AXY,DV7CPY, DV7SCP,
     3         DV2NRM
C
C DA7SST.... ASSESSES CANDIDATE STEP.
C DD7TPR... RETURNS INNER PRODUCT OF TWO VECTORS.
C DF7HES.... COMPUTE FINITE-DIFFERENCE HESSIAN (FOR COVARIANCE).
C DG7QTS.... COMPUTES GOLDFELD-QUANDT-TROTTER STEP (AUGMENTED MODEL).
C DITSUM.... PRINTS ITERATION SUMMARY AND INFO ON INITIAL AND FINAL X.
C DL7MST... COMPUTES LEVENBERG-MARQUARDT STEP (GAUSS-NEWTON MODEL).
C DL7SRT.... COMPUTES CHOLESKY FACTOR OF (LOWER TRIANG. OF) SYM. MATRIX.
C DL7SQR... COMPUTES L * L**T FROM LOWER TRIANGULAR MATRIX L.
C DL7TVM... COMPUTES L**T * V, V = VECTOR, L = LOWER TRIANGULAR MATRIX.
C DL7SVX... ESTIMATES LARGEST SING. VALUE OF LOWER TRIANG. MATRIX.
C DL7SVN... ESTIMATES SMALLEST SING. VALUE OF LOWER TRIANG. MATRIX.
C DL7VML.... COMPUTES L * V, V = VECTOR, L = LOWER TRIANGULAR MATRIX.
C DPARCK.... CHECK VALIDITY OF IV AND V INPUT COMPONENTS.
C DRLDST... COMPUTES V(RELDX) = RELATIVE STEP SIZE.
C DR7MDC... RETURNS MACHINE-DEPENDENT CONSTANTS.
C DS7LUP... PERFORMS QUASI-NEWTON UPDATE ON COMPACTLY STORED LOWER TRI-
C             ANGLE OF A SYMMETRIC MATRIX.
C STOPX.... RETURNS .TRUE. IF THE BREAK KEY HAS BEEN PRESSED.
C DV2AXY.... COMPUTES SCALAR TIMES ONE VECTOR PLUS ANOTHER.
C DV7CPY.... COPIES ONE VECTOR TO ANOTHER.
C DV7SCP... SETS ALL ELEMENTS OF A VECTOR TO A SCALAR.
C DV2NRM... RETURNS THE 2-NORM OF A VECTOR.
C
C  ***  SUBSCRIPTS FOR IV AND V  ***
C
      INTEGER CNVCOD, COSMIN, COVMAT, COVREQ, DGNORM, DIG, DSTNRM, F,
     1        FDH, FDIF, FUZZ, F0, GTSTEP, H, HC, IERR, INCFAC, INITS,
     2        IPIVOT, IRC, KAGQT, KALM, LMAT, LMAX0, LMAXS, MODE, MODEL,
     3        MXFCAL, MXITER, NEXTV, NFCALL, NFGCAL, NFCOV, NGCOV,
     4        NGCALL, NITER, NVSAVE, PHMXFC, PREDUC, QTR, RADFAC,
     5        RADINC, RADIUS, RAD0, RCOND, RDREQ, REGD, RELDX, RESTOR,
     6        RMAT, S, SIZE, STEP, STGLIM, STLSTG, STPPAR, SUSED,
     7        SWITCH, TOOBIG, TUNER4, TUNER5, VNEED, VSAVE, W, WSCALE,
     8        XIRC, X0
C
C  ***  IV SUBSCRIPT VALUES  ***
C
      PARAMETER (CNVCOD=55, COVMAT=26, COVREQ=15, DIG=37, FDH=74, H=56,
     1           HC=71, IERR=75, INITS=25, IPIVOT=76, IRC=29, KAGQT=33,
     2           KALM=34, LMAT=42, MODE=35, MODEL=5, MXFCAL=17,
     3           MXITER=18, NEXTV=47, NFCALL=6, NFGCAL=7, NFCOV=52,
     4           NGCOV=53, NGCALL=30, NITER=31, QTR=77, RADINC=8,
     5           RDREQ=57, REGD=67, RESTOR=9, RMAT=78, S=62, STEP=40,
     6           STGLIM=11, STLSTG=41, SUSED=64, SWITCH=12, TOOBIG=2,
     7           VNEED=4, VSAVE=60, W=65, XIRC=13, X0=43)
C
C  ***  V SUBSCRIPT VALUES  ***
C
      PARAMETER (COSMIN=47, DGNORM=1, DSTNRM=2, F=10, FDIF=11, FUZZ=45,
     1           F0=13, GTSTEP=4, INCFAC=23, LMAX0=35, LMAXS=36,
     2           NVSAVE=9, PHMXFC=21, PREDUC=7, RADFAC=16, RADIUS=8,
     3           RAD0=9, RCOND=53, RELDX=17, SIZE=55, STPPAR=5,
     4           TUNER4=29, TUNER5=30, WSCALE=56)
C
C
      PARAMETER (HALF=0.5D+0, NEGONE=-1.D+0, ONE=1.D+0, ONEP2=1.2D+0,
     1           ZERO=0.D+0)
C
C+++++++++++++++++++++++++++++++  BODY  ++++++++++++++++++++++++++++++++
C
      I = IV(1)
      IF (I .EQ. 1) GO TO 40
      IF (I .EQ. 2) GO TO 50
C
      IF (I .EQ. 12 .OR. I .EQ. 13)
     1     IV(VNEED) = IV(VNEED) + P*(3*P + 19)/2 + 7
      CALL DPARCK(1, D, IV, LIV, LV, P, V)
      I = IV(1) - 2
      IF (I .GT. 12) GO TO 999
      GO TO (290, 290, 290, 290, 290, 290, 170, 120, 170, 10, 10, 20), I
C
C  ***  STORAGE ALLOCATION  ***
C
 10   PP1O2 = P * (P + 1) / 2
      IV(S) = IV(LMAT) + PP1O2
      IV(X0) = IV(S) + PP1O2
      IV(STEP) = IV(X0) + P
      IV(STLSTG) = IV(STEP) + P
      IV(DIG) = IV(STLSTG) + P
      IV(W) = IV(DIG) + P
      IV(H) = IV(W) + 4*P + 7
      IV(NEXTV) = IV(H) + PP1O2
      IF (IV(1) .NE. 13) GO TO 20
       IV(1) = 14
       GO TO 999
C
C  ***  INITIALIZATION  ***
C
 20   IV(NITER) = 0
      IV(NFCALL) = 1
      IV(NGCALL) = 1
      IV(NFGCAL) = 1
      IV(MODE) = -1
      IV(STGLIM) = 2
      IV(TOOBIG) = 0
      IV(CNVCOD) = 0
      IV(COVMAT) = 0
      IV(NFCOV) = 0
      IV(NGCOV) = 0
      IV(RADINC) = 0
      IV(RESTOR) = 0
      IV(FDH) = 0
      V(RAD0) = ZERO
      V(STPPAR) = ZERO
      V(RADIUS) = V(LMAX0) / (ONE + V(PHMXFC))
C
C  ***  SET INITIAL MODEL AND S MATRIX  ***
C
      IV(MODEL) = 1
      IF (IV(S) .LT. 0) GO TO 999
      IF (IV(INITS) .GT. 1) IV(MODEL) = 2
      S1 = IV(S)
      IF (IV(INITS) .EQ. 0 .OR. IV(INITS) .GT. 2)
     1   CALL DV7SCP(P*(P+1)/2, V(S1), ZERO)
      IV(1) = 1
      J = IV(IPIVOT)
      IF (J .LE. 0) GO TO 999
      DO 30 I = 1, P
       IV(J) = I
       J = J + 1
 30      CONTINUE
      GO TO 999
C
C  ***  NEW FUNCTION VALUE  ***
C
 40   IF (IV(MODE) .EQ. 0) GO TO 290
      IF (IV(MODE) .GT. 0) GO TO 520
C
      IV(1) = 2
      IF (IV(TOOBIG) .EQ. 0) GO TO 999
       IV(1) = 63
       GO TO 999
C
C  ***  NEW GRADIENT  ***
C
 50   IV(KALM) = -1
      IV(KAGQT) = -1
      IV(FDH) = 0
      IF (IV(MODE) .GT. 0) GO TO 520
C
C  ***  MAKE SURE GRADIENT COULD BE COMPUTED  ***
C
      IF (IV(TOOBIG) .EQ. 0) GO TO 60
       IV(1) = 65
       GO TO 999
 60   IF (IV(HC) .LE. 0 .AND. IV(RMAT) .LE. 0) GO TO 610
C
C  ***  COMPUTE  D**-1 * GRADIENT  ***
C
      DIG1 = IV(DIG)
      K = DIG1
      DO 70 I = 1, P
       V(K) = G(I) / D(I)
       K = K + 1
 70      CONTINUE
      V(DGNORM) = DV2NRM(P, V(DIG1))
C
      IF (IV(CNVCOD) .NE. 0) GO TO 510
      IF (IV(MODE) .EQ. 0) GO TO 440
      IV(MODE) = 0
      V(F0) = V(F)
      IF (IV(INITS) .LE. 2) GO TO 100
C
C  ***  ARRANGE FOR FINITE-DIFFERENCE INITIAL S  ***
C
      IV(XIRC) = IV(COVREQ)
      IV(COVREQ) = -1
      IF (IV(INITS) .GT. 3) IV(COVREQ) = 1
      IV(CNVCOD) = 70
      GO TO 530
C
C  ***  COME TO NEXT STMT AFTER COMPUTING F.D. HESSIAN FOR INIT. S  ***
C
 80   IV(CNVCOD) = 0
      IV(MODE) = 0
      IV(NFCOV) = 0
      IV(NGCOV) = 0
      IV(COVREQ) = IV(XIRC)
      S1 = IV(S)
      PP1O2 = PS * (PS + 1) / 2
      HC1 = IV(HC)
      IF (HC1 .LE. 0) GO TO 90
       CALL DV2AXY(PP1O2, V(S1), NEGONE, V(HC1), V(H1))
       GO TO 100
 90   RMAT1 = IV(RMAT)
      CALL DL7SQR(PS, V(S1), V(RMAT1))
      CALL DV2AXY(PP1O2, V(S1), NEGONE, V(S1), V(H1))
 100  IV(1) = 2
C
C
C-----------------------------  MAIN LOOP  -----------------------------
C
C
C  ***  PRINT ITERATION SUMMARY, CHECK ITERATION LIMIT  ***
C
 110  CALL DITSUM(D, G, IV, LIV, LV, P, V, X)
 120  K = IV(NITER)
      IF (K .LT. IV(MXITER)) GO TO 130
       IV(1) = 10
       GO TO 999
 130  IV(NITER) = K + 1
C
C  ***  UPDATE RADIUS  ***
C
      IF (K .EQ. 0) GO TO 150
      STEP1 = IV(STEP)
      DO 140 I = 1, P
       V(STEP1) = D(I) * V(STEP1)
       STEP1 = STEP1 + 1
 140     CONTINUE
      STEP1 = IV(STEP)
      T = V(RADFAC) * DV2NRM(P, V(STEP1))
      IF (V(RADFAC) .LT. ONE .OR. T .GT. V(RADIUS)) V(RADIUS) = T
C
C  ***  INITIALIZE FOR START OF NEXT ITERATION  ***
C
 150  X01 = IV(X0)
      V(F0) = V(F)
      IV(IRC) = 4
      IV(H) = -IABS(IV(H))
      IV(SUSED) = IV(MODEL)
C
C     ***  COPY X TO X0  ***
C
      CALL DV7CPY(P, V(X01), X)
C
C  ***  CHECK STOPX AND FUNCTION EVALUATION LIMIT  ***
C
 160  IF (.NOT. STOPX(DUMMY)) GO TO 180
       IV(1) = 11
       GO TO 190
C
C     ***  COME HERE WHEN RESTARTING AFTER FUNC. EVAL. LIMIT OR STOPX.
C
 170  IF (V(F) .GE. V(F0)) GO TO 180
       V(RADFAC) = ONE
       K = IV(NITER)
       GO TO 130
C
 180  IF (IV(NFCALL) .LT. IV(MXFCAL) + IV(NFCOV)) GO TO 200
       IV(1) = 9
 190     IF (V(F) .GE. V(F0)) GO TO 999
C
C        ***  IN CASE OF STOPX OR FUNCTION EVALUATION LIMIT WITH
C        ***  IMPROVED V(F), EVALUATE THE GRADIENT AT X.
C
            IV(CNVCOD) = IV(1)
            GO TO 430
C
C. . . . . . . . . . . . .  COMPUTE CANDIDATE STEP  . . . . . . . . . .
C
 200  STEP1 = IV(STEP)
      W1 = IV(W)
      H1 = IV(H)
      T1 = ONE
      IF (IV(MODEL) .EQ. 2) GO TO 210
       T1 = ZERO
C
C        ***  COMPUTE LEVENBERG-MARQUARDT STEP IF POSSIBLE...
C
       RMAT1 = IV(RMAT)
       IF (RMAT1 .LE. 0) GO TO 210
       QTR1 = IV(QTR)
       IF (QTR1 .LE. 0) GO TO 210
       IPIV1 = IV(IPIVOT)
       CALL DL7MST(D, G, IV(IERR), IV(IPIV1), IV(KALM), P, V(QTR1),
     1               V(RMAT1), V(STEP1), V, V(W1))
C        *** H IS STORED IN THE END OF W AND HAS JUST BEEN OVERWRITTEN,
C        *** SO WE MARK IT INVALID...
       IV(H) = -IABS(H1)
C        *** EVEN IF H WERE STORED ELSEWHERE, IT WOULD BE NECESSARY TO
C        *** MARK INVALID THE INFORMATION DG7QTS MAY HAVE STORED IN V...
       IV(KAGQT) = -1
       GO TO 260
C
 210  IF (H1 .GT. 0) GO TO 250
C
C     ***  SET H TO  D**-1 * (HC + T1*S) * D**-1.  ***
C
       H1 = -H1
       IV(H) = H1
       IV(FDH) = 0
       J = IV(HC)
       IF (J .GT. 0) GO TO 220
          J = H1
          RMAT1 = IV(RMAT)
          CALL DL7SQR(P, V(H1), V(RMAT1))
 220     S1 = IV(S)
       DO 240 I = 1, P
            T = ONE / D(I)
            DO 230 K = 1, I
               V(H1) = T * (V(J) + T1*V(S1)) / D(K)
               J = J + 1
               H1 = H1 + 1
               S1 = S1 + 1
 230               CONTINUE
 240          CONTINUE
       H1 = IV(H)
       IV(KAGQT) = -1
C
C  ***  COMPUTE ACTUAL GOLDFELD-QUANDT-TROTTER STEP  ***
C
 250  DIG1 = IV(DIG)
      LMAT1 = IV(LMAT)
      CALL DG7QTS(D, V(DIG1), V(H1), IV(KAGQT), V(LMAT1), P, V(STEP1),
     1            V, V(W1))
      IF (IV(KALM) .GT. 0) IV(KALM) = 0
C
 260  IF (IV(IRC) .NE. 6) GO TO 270
       IF (IV(RESTOR) .NE. 2) GO TO 290
       RSTRST = 2
       GO TO 300
C
C  ***  CHECK WHETHER EVALUATING F(X0 + STEP) LOOKS WORTHWHILE  ***
C
 270  IV(TOOBIG) = 0
      IF (V(DSTNRM) .LE. ZERO) GO TO 290
      IF (IV(IRC) .NE. 5) GO TO 280
      IF (V(RADFAC) .LE. ONE) GO TO 280
      IF (V(PREDUC) .GT. ONEP2 * V(FDIF)) GO TO 280
       STEP1 = IV(STEP)
       X01 = IV(X0)
       CALL DV2AXY(P, V(STEP1), NEGONE, V(X01), X)
       IF (IV(RESTOR) .NE. 2) GO TO 290
       RSTRST = 0
       GO TO 300
C
C  ***  COMPUTE F(X0 + STEP)  ***
C
 280  X01 = IV(X0)
      STEP1 = IV(STEP)
      CALL DV2AXY(P, X, ONE, V(STEP1), V(X01))
      IV(NFCALL) = IV(NFCALL) + 1
      IV(1) = 1
      GO TO 999
C
C. . . . . . . . . . . . .  ASSESS CANDIDATE STEP  . . . . . . . . . . .
C
 290  RSTRST = 3
 300  X01 = IV(X0)
      V(RELDX) = DRLDST(P, D, X, V(X01))
      CALL DA7SST(IV, LIV, LV, V)
      STEP1 = IV(STEP)
      LSTGST = IV(STLSTG)
      I = IV(RESTOR) + 1
      GO TO (340, 310, 320, 330), I
 310  CALL DV7CPY(P, X, V(X01))
      GO TO 340
 320   CALL DV7CPY(P, V(LSTGST), V(STEP1))
       GO TO 340
 330     CALL DV7CPY(P, V(STEP1), V(LSTGST))
       CALL DV2AXY(P, X, ONE, V(STEP1), V(X01))
       V(RELDX) = DRLDST(P, D, X, V(X01))
       IV(RESTOR) = RSTRST
C
C  ***  IF NECESSARY, SWITCH MODELS  ***
C
 340  IF (IV(SWITCH) .EQ. 0) GO TO 350
       IV(H) = -IABS(IV(H))
       IV(SUSED) = IV(SUSED) + 2
       L = IV(VSAVE)
       CALL DV7CPY(NVSAVE, V, V(L))
 350  L = IV(IRC) - 4
      STPMOD = IV(MODEL)
      IF (L .GT. 0) GO TO (370,380,390,390,390,390,390,390,500,440), L
C
C  ***  DECIDE WHETHER TO CHANGE MODELS  ***
C
      E = V(PREDUC) - V(FDIF)
      S1 = IV(S)
      CALL DS7LVM(PS, Y, V(S1), V(STEP1))
      STTSST = HALF * DD7TPR(PS, V(STEP1), Y)
      IF (IV(MODEL) .EQ. 1) STTSST = -STTSST
      IF (DABS(E + STTSST) * V(FUZZ) .GE. DABS(E)) GO TO 360
C
C     ***  SWITCH MODELS  ***
C
       IV(MODEL) = 3 - IV(MODEL)
       IF (-2 .LT. L) GO TO 400
            IV(H) = -IABS(IV(H))
            IV(SUSED) = IV(SUSED) + 2
            L = IV(VSAVE)
            CALL DV7CPY(NVSAVE, V(L), V)
            GO TO 160
C
 360  IF (-3 .LT. L) GO TO 400
C
C  ***  RECOMPUTE STEP WITH NEW RADIUS  ***
C
 370  V(RADIUS) = V(RADFAC) * V(DSTNRM)
      GO TO 160
C
C  ***  COMPUTE STEP OF LENGTH V(LMAXS) FOR SINGULAR CONVERGENCE TEST
C
 380  V(RADIUS) = V(LMAXS)
      GO TO 200
C
C  ***  CONVERGENCE OR FALSE CONVERGENCE  ***
C
 390  IV(CNVCOD) = L
      IF (V(F) .GE. V(F0)) GO TO 510
       IF (IV(XIRC) .EQ. 14) GO TO 510
            IV(XIRC) = 14
C
C. . . . . . . . . . . .  PROCESS ACCEPTABLE STEP  . . . . . . . . . . .
C
 400  IV(COVMAT) = 0
      IV(REGD) = 0
C
C  ***  SEE WHETHER TO SET V(RADFAC) BY GRADIENT TESTS  ***
C
      IF (IV(IRC) .NE. 3) GO TO 430
       STEP1 = IV(STEP)
       TEMP1 = IV(STLSTG)
       TEMP2 = IV(W)
C
C     ***  SET  TEMP1 = HESSIAN * STEP  FOR USE IN GRADIENT TESTS  ***
C
       HC1 = IV(HC)
       IF (HC1 .LE. 0) GO TO 410
            CALL DS7LVM(P, V(TEMP1), V(HC1), V(STEP1))
            GO TO 420
 410     RMAT1 = IV(RMAT)
       CALL DL7TVM(P, V(TEMP1), V(RMAT1), V(STEP1))
       CALL DL7VML(P, V(TEMP1), V(RMAT1), V(TEMP1))
C
 420     IF (STPMOD .EQ. 1) GO TO 430
            S1 = IV(S)
            CALL DS7LVM(PS, V(TEMP2), V(S1), V(STEP1))
            CALL DV2AXY(PS, V(TEMP1), ONE, V(TEMP2), V(TEMP1))
C
C  ***  SAVE OLD GRADIENT AND COMPUTE NEW ONE  ***
C
 430  IV(NGCALL) = IV(NGCALL) + 1
      G01 = IV(W)
      CALL DV7CPY(P, V(G01), G)
      IV(1) = 2
      IV(TOOBIG) = 0
      GO TO 999
C
C  ***  INITIALIZATIONS -- G0 = G - G0, ETC.  ***
C
 440  G01 = IV(W)
      CALL DV2AXY(P, V(G01), NEGONE, V(G01), G)
      STEP1 = IV(STEP)
      TEMP1 = IV(STLSTG)
      TEMP2 = IV(W)
      IF (IV(IRC) .NE. 3) GO TO 470
C
C  ***  SET V(RADFAC) BY GRADIENT TESTS  ***
C
C     ***  SET  TEMP1 = D**-1 * (HESSIAN * STEP  +  (G(X0) - G(X)))  ***
C
       K = TEMP1
       L = G01
       DO 450 I = 1, P
            V(K) = (V(K) - V(L)) / D(I)
            K = K + 1
            L = L + 1
 450          CONTINUE
C
C        ***  DO GRADIENT TESTS  ***
C
       IF (DV2NRM(P, V(TEMP1)) .LE. V(DGNORM) * V(TUNER4))  GO TO 460
            IF (DD7TPR(P, G, V(STEP1))
     1                  .GE. V(GTSTEP) * V(TUNER5))  GO TO 470
 460               V(RADFAC) = V(INCFAC)
C
C  ***  COMPUTE Y VECTOR NEEDED FOR UPDATING S  ***
C
 470  CALL DV2AXY(PS, Y, NEGONE, Y, G)
C
C  ***  DETERMINE SIZING FACTOR V(SIZE)  ***
C
C     ***  SET TEMP1 = S * STEP  ***
      S1 = IV(S)
      CALL DS7LVM(PS, V(TEMP1), V(S1), V(STEP1))
C
      T1 = DABS(DD7TPR(PS, V(STEP1), V(TEMP1)))
      T = DABS(DD7TPR(PS, V(STEP1), Y))
      V(SIZE) = ONE
      IF (T .LT. T1) V(SIZE) = T / T1
C
C  ***  SET G0 TO WCHMTD CHOICE OF FLETCHER AND AL-BAALI  ***
C
      HC1 = IV(HC)
      IF (HC1 .LE. 0) GO TO 480
       CALL DS7LVM(PS, V(G01), V(HC1), V(STEP1))
       GO TO 490
C
 480  RMAT1 = IV(RMAT)
      CALL DL7TVM(PS, V(G01), V(RMAT1), V(STEP1))
      CALL DL7VML(PS, V(G01), V(RMAT1), V(G01))
C
 490  CALL DV2AXY(PS, V(G01), ONE, Y, V(G01))
C
C  ***  UPDATE S  ***
C
      CALL DS7LUP(V(S1), V(COSMIN), PS, V(SIZE), V(STEP1), V(TEMP1),
     1            V(TEMP2), V(G01), V(WSCALE), Y)
      IV(1) = 2
      GO TO 110
C
C. . . . . . . . . . . . . .  MISC. DETAILS  . . . . . . . . . . . . . .
C
C  ***  BAD PARAMETERS TO ASSESS  ***
C
 500  IV(1) = 64
      GO TO 999
C
C
C  ***  CONVERGENCE OBTAINED -- SEE WHETHER TO COMPUTE COVARIANCE  ***
C
 510  IF (IV(RDREQ) .EQ. 0) GO TO 600
      IF (IV(FDH) .NE. 0) GO TO 600
      IF (IV(CNVCOD) .GE. 7) GO TO 600
      IF (IV(REGD) .GT. 0) GO TO 600
      IF (IV(COVMAT) .GT. 0) GO TO 600
      IF (IABS(IV(COVREQ)) .GE. 3) GO TO 560
      IF (IV(RESTOR) .EQ. 0) IV(RESTOR) = 2
      GO TO 530
C
C  ***  COMPUTE FINITE-DIFFERENCE HESSIAN FOR COMPUTING COVARIANCE  ***
C
 520  IV(RESTOR) = 0
 530  CALL DF7HES(D, G, I, IV, LIV, LV, P, V, X)
      GO TO (540, 550, 580), I
 540  IV(NFCOV) = IV(NFCOV) + 1
      IV(NFCALL) = IV(NFCALL) + 1
      IV(1) = 1
      GO TO 999
C
 550  IV(NGCOV) = IV(NGCOV) + 1
      IV(NGCALL) = IV(NGCALL) + 1
      IV(NFGCAL) = IV(NFCALL) + IV(NGCOV)
      IV(1) = 2
      GO TO 999
C
 560  H1 = IABS(IV(H))
      IV(H) = -H1
      PP1O2 = P * (P + 1) / 2
      RMAT1 = IV(RMAT)
      IF (RMAT1 .LE. 0) GO TO 570
         LMAT1 = IV(LMAT)
         CALL DV7CPY(PP1O2, V(LMAT1), V(RMAT1))
         V(RCOND) = ZERO
         GO TO 590
 570  HC1 = IV(HC)
      IV(FDH) = H1
      CALL DV7CPY(P*(P+1)/2, V(H1), V(HC1))
C
C  ***  COMPUTE CHOLESKY FACTOR OF FINITE-DIFFERENCE HESSIAN
C  ***  FOR USE IN CALLER*S COVARIANCE CALCULATION...
C
 580  LMAT1 = IV(LMAT)
      H1 = IV(FDH)
      IF (H1 .LE. 0) GO TO 600
      IF (IV(CNVCOD) .EQ. 70) GO TO 80
      CALL DL7SRT(1, P, V(LMAT1), V(H1), I)
      IV(FDH) = -1
      V(RCOND) = ZERO
      IF (I .NE. 0) GO TO 600
C
 590  IV(FDH) = -1
      STEP1 = IV(STEP)
      T = DL7SVN(P, V(LMAT1), V(STEP1), V(STEP1))
      IF (T .LE. ZERO) GO TO 600
      T = T / DL7SVX(P, V(LMAT1), V(STEP1), V(STEP1))
      IF (T .GT. DR7MDC(4)) IV(FDH) = H1
      V(RCOND) = T
C
 600  IV(MODE) = 0
      IV(1) = IV(CNVCOD)
      IV(CNVCOD) = 0
      GO TO 999
C
C  ***  SPECIAL RETURN FOR MISSING HESSIAN INFORMATION -- BOTH
C  ***  IV(HC) .LE. 0 AND IV(RMAT) .LE. 0
C
 610  IV(1) = 1400
C
 999  RETURN
C
C  ***  LAST LINE OF DG7LIT FOLLOWS  ***
      END
      SUBROUTINE DL7MSB(B, D, G, IERR, IPIV, IPIV1, IPIV2, KA, LMAT,
     1                  LV, P, P0, PC, QTR, RMAT, STEP, TD, TG, V,
     2                  W, WLM, X, X0)
C
C  ***  COMPUTE HEURISTIC BOUNDED NEWTON STEP  ***
C
      INTEGER IERR, KA, LV, P, P0, PC
      INTEGER IPIV(P), IPIV1(P), IPIV2(P)
      DOUBLE PRECISION B(2,P), D(P), G(P), LMAT(1), QTR(P), RMAT(1),
     1                 STEP(P,3), TD(P), TG(P), V(LV), W(P), WLM(1),
     2                 X0(P), X(P)
C     DIMENSION LMAT(P*(P+1)/2), RMAT(P*(P+1)/2), WLM(P*(P+5)/2 + 4)
C
      DOUBLE PRECISION DD7TPR
      EXTERNAL DD7MLP, DD7TPR, DL7MST, DL7TVM, DQ7RSH, DS7BQN,
     1        DV2AXY,DV7CPY, DV7IPR, DV7SCP, DV7VMP
C
C  ***  LOCAL VARIABLES  ***
C
      INTEGER I, J, K, K0, KB, KINIT, L, NS, P1, P10, P11
      DOUBLE PRECISION DS0, NRED, PRED, RAD
      DOUBLE PRECISION ONE, ZERO
C
C  ***  V SUBSCRIPTS  ***
C
      INTEGER DST0, DSTNRM, GTSTEP, NREDUC, PREDUC, RADIUS
C
      PARAMETER (DST0=3, DSTNRM=2, GTSTEP=4, NREDUC=6, PREDUC=7,
     1           RADIUS=8)
      DATA ONE/1.D+0/, ZERO/0.D+0/
C
C+++++++++++++++++++++++++++++++  BODY  ++++++++++++++++++++++++++++++++
C
      P1 = PC
      IF (KA .LT. 0) GO TO 10
       NRED = V(NREDUC)
       DS0 = V(DST0)
       GO TO 20
 10   P0 = 0
      KA = -1
C
 20   KINIT = -1
      IF (P0 .EQ. P1) KINIT = KA
      CALL DV7CPY(P, X, X0)
      CALL DV7CPY(P, TD, D)
C     *** USE STEP(1,3) AS TEMP. COPY OF QTR ***
      CALL DV7CPY(P, STEP(1,3), QTR)
      CALL DV7IPR(P, IPIV, TD)
      PRED = ZERO
      RAD = V(RADIUS)
      KB = -1
      V(DSTNRM) = ZERO
      IF (P1 .GT. 0) GO TO 30
       NRED = ZERO
       DS0 = ZERO
       CALL DV7SCP(P, STEP, ZERO)
       GO TO 90
C
 30   CALL DV7VMP(P, TG, G, D, -1)
      CALL DV7IPR(P, IPIV, TG)
      P10 = P1
 40   K = KINIT
      KINIT = -1
      V(RADIUS) = RAD - V(DSTNRM)
      CALL DV7VMP(P1, TG, TG, TD, 1)
      DO 50 I = 1, P1
 50      IPIV1(I) = I
      K0 = MAX0(0, K)
      CALL DL7MST(TD, TG, IERR, IPIV1, K, P1, STEP(1,3), RMAT, STEP,
     1            V, WLM)
      CALL DV7VMP(P1, TG, TG, TD, -1)
      P0 = P1
      IF (KA .GE. 0) GO TO 60
       NRED = V(NREDUC)
       DS0 = V(DST0)
C
 60   KA = K
      V(RADIUS) = RAD
      L = P1 + 5
      IF (K .LE. K0) CALL DD7MLP(P1, LMAT, TD, RMAT, -1)
      IF (K .GT. K0) CALL DD7MLP(P1, LMAT, TD, WLM(L), -1)
      CALL DS7BQN(B, D, STEP(1,2), IPIV, IPIV1, IPIV2, KB, LMAT,
     1            LV, NS, P, P1, STEP, TD, TG, V, W, X, X0)
      PRED = PRED + V(PREDUC)
      IF (NS .EQ. 0) GO TO 80
      P0 = 0
C
C  ***  UPDATE RMAT AND QTR  ***
C
      P11 = P1 + 1
      L = P10 + P11
      DO 70 K = P11, P10
       J = L - K
       I = IPIV2(J)
       IF (I .LT. J) CALL DQ7RSH(I, J, .TRUE., QTR, RMAT, W)
 70      CONTINUE
C
 80   IF (KB .GT. 0) GO TO 90
C
C  ***  UPDATE LOCAL COPY OF QTR  ***
C
      CALL DV7VMP(P10, W, STEP(1,2), TD, -1)
      CALL DL7TVM(P10, W, LMAT, W)
      CALL DV2AXY(P10, STEP(1,3), ONE, W, QTR)
      GO TO 40
C
 90   V(DST0) = DS0
      V(NREDUC) = NRED
      V(PREDUC) = PRED
      V(GTSTEP) = DD7TPR(P, G, STEP)
C
      RETURN
C  ***  LAST LINE OF DL7MSB FOLLOWS  ***
      END
      SUBROUTINE DN2LRD(DR, IV, L, LH, LIV, LV, ND, NN, P, R, RD, V)
C
C  ***  COMPUTE REGRESSION DIAGNOSTIC AND DEFAULT COVARIANCE MATRIX FOR
C        DRN2G  ***
C
C  ***  PARAMETERS  ***
C
      INTEGER LH, LIV, LV, ND, NN, P
      INTEGER IV(LIV)
      DOUBLE PRECISION DR(ND,P), L(LH), R(NN), RD(NN), V(LV)
C
C  ***  CODED BY DAVID M. GAY (WINTER 1982, FALL 1983)  ***
C
C  ***  EXTERNAL FUNCTIONS AND SUBROUTINES  ***
C
      DOUBLE PRECISION DD7TPR
      EXTERNAL DD7TPR, DL7ITV, DL7IVM,DO7PRD, DV7SCP
C
C  ***  LOCAL VARIABLES  ***
C
      INTEGER COV, I, J, M, STEP1
      DOUBLE PRECISION A, FF, S, T
C
C  ***  CONSTANTS  ***
C
      DOUBLE PRECISION NEGONE, ONE, ONEV(1), ZERO
C
C  ***  INTRINSIC FUNCTIONS  ***
C/+
      DOUBLE PRECISION DSQRT
C/
C
C  ***  IV AND V SUBSCRIPTS  ***
C
      INTEGER F, H, MODE, RDREQ, STEP
      PARAMETER (F=10, H=56, MODE=35, RDREQ=57, STEP=40)
      PARAMETER (NEGONE=-1.D+0, ONE=1.D+0, ZERO=0.D+0)
      DATA ONEV(1)/1.D+0/
C
C++++++++++++++++++++++++++++++++  BODY  +++++++++++++++++++++++++++++++
C
      STEP1 = IV(STEP)
      I = IV(RDREQ)
      IF (I .LE. 0) GO TO 999
      IF (MOD(I,4) .LT. 2) GO TO 30
      FF = ONE
      IF (V(F) .NE. ZERO) FF = ONE / DSQRT(DABS(V(F)))
      CALL DV7SCP(NN, RD, NEGONE)
      DO 20 I = 1, NN
       A = R(I)**2
       M = STEP1
       DO 10 J = 1, P
          V(M) = DR(I,J)
          M = M + 1
 10         CONTINUE
       CALL DL7IVM(P, V(STEP1), L, V(STEP1))
       S = DD7TPR(P, V(STEP1), V(STEP1))
       T = ONE - S
       IF (T .LE. ZERO) GO TO 20
       A = A * S / T
       RD(I) = DSQRT(A) * FF
 20      CONTINUE
C
 30   IF (IV(MODE) - P .LT. 2) GO TO 999
C
C  ***  COMPUTE DEFAULT COVARIANCE MATRIX  ***
C
      COV = IABS(IV(H))
      DO 50 I = 1, NN
       M = STEP1
       DO 40 J = 1, P
          V(M) = DR(I,J)
          M = M + 1
 40         CONTINUE
       CALL DL7IVM(P, V(STEP1), L, V(STEP1))
       CALL DL7ITV(P, V(STEP1), L, V(STEP1))
       CALL DO7PRD(1, LH, P, V(COV), ONEV, V(STEP1), V(STEP1))
 50      CONTINUE
C
 999  RETURN
C  ***  LAST LINE OF DN2LRD FOLLOWS  ***
      END
      SUBROUTINE DR7TVM(N, P, Y, D, U, X)
C
C  ***  SET Y TO R*X, WHERE R IS THE UPPER TRIANGULAR MATRIX WHOSE
C  ***  DIAGONAL IS IN D AND WHOSE STRICT UPPER TRIANGLE IS IN U.
C
C  ***  X AND Y MAY SHARE STORAGE.
C
      INTEGER N, P
      DOUBLE PRECISION Y(P), D(P), U(N,P), X(P)
C
      DOUBLE PRECISION DD7TPR
      EXTERNAL DD7TPR
C
C  ***  LOCAL VARIABLES  ***
C
      INTEGER I, II, PL, PP1
      DOUBLE PRECISION T
C
C  ***  BODY  ***
C
      PL = MIN0(N, P)
      PP1 = PL + 1
      DO 10 II = 1, PL
       I = PP1 - II
       T = X(I) * D(I)
       IF (I .GT. 1) T = T + DD7TPR(I-1, U(1,I), X)
       Y(I) = T
 10      CONTINUE
      RETURN
C  ***  LAST LINE OF DR7TVM FOLLOWS  ***
      END
      SUBROUTINE DQ7RAD(N, NN, P, QTR, QTRSET, RMAT, W, Y)
C
C  ***  ADD ROWS W TO QR FACTORIZATION WITH R MATRIX RMAT AND
C  ***  Q**T * RESIDUAL = QTR.  Y = NEW COMPONENTS OF RESIDUAL
C  ***  CORRESPONDING TO W.  QTR, Y REFERENCED ONLY IF QTRSET = .TRUE.
C
      LOGICAL QTRSET
      INTEGER N, NN, P
      DOUBLE PRECISION QTR(P), RMAT(1), W(NN,P), Y(N)
C     DIMENSION RMAT(P*(P+1)/2)
C/+
      DOUBLE PRECISION DSQRT
C/
      DOUBLE PRECISION DD7TPR, DR7MDC, DV2NRM
      EXTERNAL DD7TPR, DR7MDC,DV2AXY, DV7SCL, DV2NRM
C
C  ***  LOCAL VARIABLES  ***
C
      INTEGER I, II, IJ, IP1, J, K, NK
      DOUBLE PRECISION ARI, QRI, RI, S, T, WI
      DOUBLE PRECISION BIG, BIGRT, ONE, TINY, TINYRT, ZERO
      SAVE BIGRT, TINY, TINYRT
      DATA BIG/-1.D+0/, BIGRT/-1.D+0/, ONE/1.D+0/, TINY/0.D+0/,
     1     TINYRT/0.D+0/, ZERO/0.D+0/
C
C------------------------------ BODY -----------------------------------
C
      IF (TINY .GT. ZERO) GO TO 10
       TINY = DR7MDC(1)
       BIG = DR7MDC(6)
       IF (TINY*BIG .LT. ONE) TINY = ONE / BIG
 10   K = 1
      NK = N
      II = 0
      DO 180 I = 1, P
       II = II + I
       IP1 = I + 1
       IJ = II + I
       IF (NK .LE. 1) T = DABS(W(K,I))
       IF (NK .GT. 1) T = DV2NRM(NK, W(K,I))
       IF (T .LT. TINY) GOTO  180
       RI = RMAT(II)
       IF (RI .NE. ZERO) GO TO 100
          IF (NK .GT. 1) GO TO 30
             IJ = II
             DO 20 J = I, P
              RMAT(IJ) = W(K,J)
              IJ = IJ + J
 20               CONTINUE
             IF (QTRSET) QTR(I) = Y(K)
             W(K,I) = ZERO
             GO TO 999
 30         WI = W(K,I)
          IF (BIGRT .GT. ZERO) GO TO 40
             BIGRT = DR7MDC(5)
             TINYRT = DR7MDC(2)
 40         IF (T .LE. TINYRT) GO TO 50
          IF (T .GE. BIGRT) GO TO 50
             IF (WI .LT. ZERO) T = -T
             WI = WI + T
             S = DSQRT(T * WI)
             GO TO 70
 50         S = DSQRT(T)
          IF (WI .LT. ZERO) GO TO 60
             WI = WI + T
             S = S * DSQRT(WI)
             GO TO 70
 60         T = -T
          WI = WI + T
          S = S * DSQRT(-WI)
 70         W(K,I) = WI
          CALL DV7SCL(NK, W(K,I), ONE/S, W(K,I))
          RMAT(II) = -T
          IF (.NOT. QTRSET) GO TO 80
          CALL DV2AXY(NK, Y(K), -DD7TPR(NK,Y(K),W(K,I)), W(K,I), Y(K))
          QTR(I) = Y(K)
 80         IF (IP1 .GT. P) GO TO 999
          DO 90 J = IP1, P
             CALL DV2AXY(NK, W(K,J), -DD7TPR(NK,W(K,J),W(K,I)),
     1                    W(K,I), W(K,J))
             RMAT(IJ) = W(K,J)
             IJ = IJ + J
 90            CONTINUE
          IF (NK .LE. 1) GO TO 999
          K = K + 1
          NK = NK - 1
          GO TO 180
C
 100     ARI = DABS(RI)
       IF (ARI .GT. T) GO TO 110
          T = T * DSQRT(ONE + (ARI/T)**2)
          GO TO 120
 110     T = ARI * DSQRT(ONE + (T/ARI)**2)
 120     IF (RI .LT. ZERO) T = -T
       RI = RI + T
       RMAT(II) = -T
       S = -RI / T
       IF (NK .LE. 1) GO TO 150
       CALL DV7SCL(NK, W(K,I), ONE/RI, W(K,I))
       IF (.NOT. QTRSET) GO TO 130
          QRI = QTR(I)
          T = S * ( QRI  +  DD7TPR(NK, Y(K), W(K,I)) )
          QTR(I) = QRI + T
 130     IF (IP1 .GT. P) GO TO 999
       IF (QTRSET) CALL DV2AXY(NK, Y(K), T, W(K,I), Y(K))
       DO 140 J = IP1, P
          RI = RMAT(IJ)
          T = S * ( RI  +  DD7TPR(NK, W(K,J), W(K,I)) )
          CALL DV2AXY(NK, W(K,J), T, W(K,I), W(K,J))
          RMAT(IJ) = RI + T
          IJ = IJ + J
 140        CONTINUE
       GO TO 180
C
 150     WI = W(K,I) / RI
       W(K,I) = WI
       IF (.NOT. QTRSET) GO TO 160
          QRI = QTR(I)
          T = S * ( QRI + Y(K)*WI )
          QTR(I) = QRI + T
 160     IF (IP1 .GT. P) GO TO 999
       IF (QTRSET) Y(K) = T*WI + Y(K)
       DO 170 J = IP1, P
          RI = RMAT(IJ)
          T = S * (RI + W(K,J)*WI)
          W(K,J) = W(K,J) + T*WI
          RMAT(IJ) = RI + T
          IJ = IJ + J
 170        CONTINUE
 180     CONTINUE
C
 999  RETURN
C  ***  LAST LINE OF DQ7RAD FOLLOWS  ***
      END
      SUBROUTINE DF7HES(D, G, IRT, IV, LIV, LV, P, V, X)
C
C  ***  COMPUTE FINITE-DIFFERENCE HESSIAN, STORE IT IN V STARTING
C  ***  AT V(IV(FDH)) = V(-IV(H)).
C
C  ***  IF IV(COVREQ) .GE. 0 THEN DF7HES USES GRADIENT DIFFERENCES,
C  ***  OTHERWISE FUNCTION DIFFERENCES.  STORAGE IN V IS AS IN DG7LIT.
C
C IRT VALUES...
C     1 = COMPUTE FUNCTION VALUE, I.E., V(F).
C     2 = COMPUTE G.
C     3 = DONE.
C
C
C  ***  PARAMETER DECLARATIONS  ***
C
      INTEGER IRT, LIV, LV, P
      INTEGER IV(LIV)
      DOUBLE PRECISION D(P), G(P), V(LV), X(P)
C
C  ***  LOCAL VARIABLES  ***
C
      INTEGER GSAVE1, HES, HMI, HPI, HPM, I, K, KIND, L, M, MM1, MM1O2,
     1        PP1O2, STPI, STPM, STP0
      DOUBLE PRECISION DEL, HALF, NEGPT5, ONE, TWO, ZERO
C
C  ***  EXTERNAL SUBROUTINES  ***
C
      EXTERNAL DV7CPY
C
C DV7CPY.... COPY ONE VECTOR TO ANOTHER.
C
C  ***  SUBSCRIPTS FOR IV AND V  ***
C
      INTEGER COVREQ, DELTA, DELTA0, DLTFDC, F, FDH, FX, H, KAGQT, MODE,
     1        NFGCAL, SAVEI, SWITCH, TOOBIG, W, XMSAVE
C
      PARAMETER (HALF=0.5D+0, NEGPT5=-0.5D+0, ONE=1.D+0, TWO=2.D+0,
     1     ZERO=0.D+0)
C
      PARAMETER (COVREQ=15, DELTA=52, DELTA0=44, DLTFDC=42, F=10,
     1           FDH=74, FX=53, H=56, KAGQT=33, MODE=35, NFGCAL=7,
     2           SAVEI=63, SWITCH=12, TOOBIG=2, W=65, XMSAVE=51)
C
C+++++++++++++++++++++++++++++++  BODY  ++++++++++++++++++++++++++++++++
C
      IRT = 4
      KIND = IV(COVREQ)
      M = IV(MODE)
      IF (M .GT. 0) GO TO 10
       IV(H) = -IABS(IV(H))
       IV(FDH) = 0
       IV(KAGQT) = -1
       V(FX) = V(F)
 10   IF (M .GT. P) GO TO 999
      IF (KIND .LT. 0) GO TO 110
C
C  ***  COMPUTE FINITE-DIFFERENCE HESSIAN USING BOTH FUNCTION AND
C  ***  GRADIENT VALUES.
C
      GSAVE1 = IV(W) + P
      IF (M .GT. 0) GO TO 20
C        ***  FIRST CALL ON DF7HES.  SET GSAVE = G, TAKE FIRST STEP  ***
       CALL DV7CPY(P, V(GSAVE1), G)
       IV(SWITCH) = IV(NFGCAL)
       GO TO 90
C
 20   DEL = V(DELTA)
      X(M) = V(XMSAVE)
      IF (IV(TOOBIG) .EQ. 0) GO TO 40
C
C     ***  HANDLE OVERSIZE V(DELTA)  ***
C
       IF (DEL*X(M) .GT. ZERO) GO TO 30
C             ***  WE ALREADY TRIED SHRINKING V(DELTA), SO QUIT  ***
            IV(FDH) = -2
            GO TO 220
C
C        ***  TRY SHRINKING V(DELTA)  ***
 30      DEL = NEGPT5 * DEL
       GO TO 100
C
 40   HES = -IV(H)
C
C  ***  SET  G = (G - GSAVE)/DEL  ***
C
      DO 50 I = 1, P
       G(I) = (G(I) - V(GSAVE1)) / DEL
       GSAVE1 = GSAVE1 + 1
 50      CONTINUE
C
C  ***  ADD G AS NEW COL. TO FINITE-DIFF. HESSIAN MATRIX  ***
C
      K = HES + M*(M-1)/2
      L = K + M - 2
      IF (M .EQ. 1) GO TO 70
C
C  ***  SET  H(I,M) = 0.5 * (H(I,M) + G(I))  FOR I = 1 TO M-1  ***
C
      MM1 = M - 1
      DO 60 I = 1, MM1
       V(K) = HALF * (V(K) + G(I))
       K = K + 1
 60      CONTINUE
C
C  ***  ADD  H(I,M) = G(I)  FOR I = M TO P  ***
C
 70   L = L + 1
      DO 80 I = M, P
       V(L) = G(I)
       L = L + I
 80      CONTINUE
C
 90   M = M + 1
      IV(MODE) = M
      IF (M .GT. P) GO TO 210
C
C  ***  CHOOSE NEXT FINITE-DIFFERENCE STEP, RETURN TO GET G THERE  ***
C
      DEL = V(DELTA0) * DMAX1(ONE/D(M), DABS(X(M)))
      IF (X(M) .LT. ZERO) DEL = -DEL
      V(XMSAVE) = X(M)
 100  X(M) = X(M) + DEL
      V(DELTA) = DEL
      IRT = 2
      GO TO 999
C
C  ***  COMPUTE FINITE-DIFFERENCE HESSIAN USING FUNCTION VALUES ONLY.
C
 110  STP0 = IV(W) + P - 1
      MM1 = M - 1
      MM1O2 = M*MM1/2
      IF (M .GT. 0) GO TO 120
C        ***  FIRST CALL ON DF7HES.  ***
       IV(SAVEI) = 0
       GO TO 200
C
 120  I = IV(SAVEI)
      HES = -IV(H)
      IF (I .GT. 0) GO TO 180
      IF (IV(TOOBIG) .EQ. 0) GO TO 140
C
C     ***  HANDLE OVERSIZE STEP  ***
C
       STPM = STP0 + M
       DEL = V(STPM)
       IF (DEL*X(XMSAVE) .GT. ZERO) GO TO 130
C             ***  WE ALREADY TRIED SHRINKING THE STEP, SO QUIT  ***
            IV(FDH) = -2
            GO TO 220
C
C        ***  TRY SHRINKING THE STEP  ***
 130     DEL = NEGPT5 * DEL
       X(M) = X(XMSAVE) + DEL
       V(STPM) = DEL
       IRT = 1
       GO TO 999
C
C  ***  SAVE F(X + STP(M)*E(M)) IN H(P,M)  ***
C
 140  PP1O2 = P * (P-1) / 2
      HPM = HES + PP1O2 + MM1
      V(HPM) = V(F)
C
C  ***  START COMPUTING ROW M OF THE FINITE-DIFFERENCE HESSIAN H.  ***
C
      HMI = HES + MM1O2
      IF (MM1 .EQ. 0) GO TO 160
      HPI = HES + PP1O2
      DO 150 I = 1, MM1
       V(HMI) = V(FX) - (V(F) + V(HPI))
       HMI = HMI + 1
       HPI = HPI + 1
 150     CONTINUE
 160  V(HMI) = V(F) - TWO*V(FX)
C
C  ***  COMPUTE FUNCTION VALUES NEEDED TO COMPLETE ROW M OF H.  ***
C
      I = 1
C
 170  IV(SAVEI) = I
      STPI = STP0 + I
      V(DELTA) = X(I)
      X(I) = X(I) + V(STPI)
      IF (I .EQ. M) X(I) = V(XMSAVE) - V(STPI)
      IRT = 1
      GO TO 999
C
 180  X(I) = V(DELTA)
      IF (IV(TOOBIG) .EQ. 0) GO TO 190
C        ***  PUNT IN THE EVENT OF AN OVERSIZE STEP  ***
       IV(FDH) = -2
       GO TO 220
C
C  ***  FINISH COMPUTING H(M,I)  ***
C
 190  STPI = STP0 + I
      HMI = HES + MM1O2 + I - 1
      STPM = STP0 + M
      V(HMI) = (V(HMI) + V(F)) / (V(STPI)*V(STPM))
      I = I + 1
      IF (I .LE. M) GO TO 170
      IV(SAVEI) = 0
      X(M) = V(XMSAVE)
C
 200  M = M + 1
      IV(MODE) = M
      IF (M .GT. P) GO TO 210
C
C  ***  PREPARE TO COMPUTE ROW M OF THE FINITE-DIFFERENCE HESSIAN H.
C  ***  COMPUTE M-TH STEP SIZE STP(M), THEN RETURN TO OBTAIN
C  ***  F(X + STP(M)*E(M)), WHERE E(M) = M-TH STD. UNIT VECTOR.
C
      DEL = V(DLTFDC) * DMAX1(ONE/D(M), DABS(X(M)))
      IF (X(M) .LT. ZERO) DEL = -DEL
      V(XMSAVE) = X(M)
      X(M) = X(M) + DEL
      STPM = STP0 + M
      V(STPM) = DEL
      IRT = 1
      GO TO 999
C
C  ***  RESTORE V(F), ETC.  ***
C
 210  IV(FDH) = HES
 220  V(F) = V(FX)
      IRT = 3
      IF (KIND .LT. 0) GO TO 999
       IV(NFGCAL) = IV(SWITCH)
       GSAVE1 = IV(W) + P
       CALL DV7CPY(P, G, V(GSAVE1))
       GO TO 999
C
 999  RETURN
C  ***  LAST CARD OF DF7HES FOLLOWS  ***
      END
      SUBROUTINE  DRNSG(A, ALF, C, DA, IN, IV, L, L1, LA, LIV, LV,
     1                  N, NDA, P, V, Y)
C
C  ***  ITERATION DRIVER FOR SEPARABLE NONLINEAR LEAST SQUARES.
C
C  ***  PARAMETER DECLARATIONS  ***
C
      INTEGER L, L1, LA, LIV, LV, N, NDA, P
      INTEGER IN(2,NDA), IV(LIV)
C     DIMENSION UIPARM(*)
      DOUBLE PRECISION A(LA,L1), ALF(P), C(L), DA(LA,NDA), V(LV), Y(N)
C
C  ***  PURPOSE  ***
C
C GIVEN A SET OF N OBSERVATIONS Y(1)....Y(N) OF A DEPENDENT VARIABLE
C T(1)...T(N),  DRNSG ATTEMPTS TO COMPUTE A LEAST SQUARES FIT
C TO A FUNCTION  ETA  (THE MODEL) WHICH IS A LINEAR COMBINATION
C
C                  L
C ETA(C,ALF,T) =  SUM C * PHI(ALF,T) +PHI   (ALF,T)
C                 J=1  J     J           L+1
C
C OF NONLINEAR FUNCTIONS PHI(J) DEPENDENT ON T AND ALF(1),...,ALF(P)
C (.E.G. A SUM OF EXPONENTIALS OR GAUSSIANS).  THAT IS, IT DETERMINES
C NONLINEAR PARAMETERS ALF WHICH MINIMIZE
C
C                   2    N                      2
C     NORM(RESIDUAL)  = SUM  (Y - ETA(C,ALF,T )).
C                       I=1    I             I
C
C THE (L+1)ST TERM IS OPTIONAL.
C
C
C  ***  PARAMETERS  ***
C
C      A (IN)  MATRIX PHI(ALF,T) OF THE MODEL.
C    ALF (I/O) NONLINEAR PARAMETERS.
C                 INPUT = INITIAL GUESS,
C                 OUTPUT = BEST ESTIMATE FOUND.
C      C (OUT) LINEAR PARAMETERS (ESTIMATED).
C     DA (IN)  DERIVATIVES OF COLUMNS OF A WITH RESPECT TO COMPONENTS
C                 OF ALF, AS SPECIFIED BY THE IN ARRAY...
C     IN (IN)  WHEN  DRNSG IS CALLED WITH IV(1) = 2 OR -2, THEN FOR
C                 I = 1(1)NDA, COLUMN I OF DA IS THE PARTIAL
C                 DERIVATIVE WITH RESPECT TO ALF(IN(1,I)) OF COLUMN
C                 IN(2,I) OF A, UNLESS IV(1,I) IS NOT POSITIVE (IN
C                 WHICH CASE COLUMN I OF DA IS IGNORED.  IV(1) = -2
C                 MEANS THERE ARE MORE COLUMNS OF DA TO COME AND
C                  DRNSG SHOULD RETURN FOR THEM.
C     IV (I/O) INTEGER PARAMETER AND SCRATCH VECTOR.   DRNSG RETURNS
C                 WITH IV(1) = 1 WHEN IT WANTS A TO BE EVALUATED AT
C                 ALF AND WITH IV(1) = 2 WHEN IT WANTS DA TO BE
C                 EVALUATED AT ALF.  WHEN CALLED WITH IV(1) = -2
C                 (AFTER A RETURN WITH IV(1) = 2),  DRNSG RETURNS
C                 WITH IV(1) = -2 TO GET MORE COLUMNS OF DA.
C      L (IN)  NUMBER OF LINEAR PARAMETERS TO BE ESTIMATED.
C     L1 (IN)  L+1 IF PHI(L+1) IS IN THE MODEL, L IF NOT.
C     LA (IN)  LEAD DIMENSION OF A.  MUST BE AT LEAST N.
C    LIV (IN)  LENGTH OF IV.  MUST BE AT LEAST 110 + L + P.
C     LV (IN)  LENGTH OF V.  MUST BE AT LEAST
C                 105 + 2*N + JLEN + L*(L+3)/2 + P*(2*P + 17),
C                 WHERE  JLEN = (L+P)*(N+L+P+1),  UNLESS NEITHER A
C                 COVARIANCE MATRIX NOR REGRESSION DIAGNOSTICS ARE
C                 REQUESTED, IN WHICH CASE  JLEN = N*P.
C      N (IN)  NUMBER OF OBSERVATIONS.
C    NDA (IN)  NUMBER OF COLUMNS IN DA AND IN.
C      P (IN)  NUMBER OF NONLINEAR PARAMETERS TO BE ESTIMATED.
C      V (I/O) FLOATING-POINT PARAMETER AND SCRATCH VECTOR.
C              IF A COVARIANCE ESTIMATE IS REQUESTED, IT IS FOR
C              (ALF,C) -- NONLINEAR PARAMETERS ORDERED FIRST,
C              FOLLOWED BY LINEAR PARAMETERS.
C      Y (IN)  RIGHT-HAND SIDE VECTOR.
C
C
C  ***  EXTERNAL SUBROUTINES  ***
C
      DOUBLE PRECISION DD7TPR, DL7SVX, DL7SVN, DR7MDC
      EXTERNAL DC7VFN,DIVSET, DD7TPR,DITSUM, DL7ITV,DL7SRT, DL7SVX,
     1         DL7SVN, DN2CVP, DN2LRD, DN2RDP,  DRN2G, DQ7APL,DQ7RAD,
     2        DQ7RFH, DR7MDC, DS7CPR,DV2AXY,DV7CPY,DV7PRM, DV7SCL,
     3         DV7SCP
C
C DC7VFN... FINISHES COVARIANCE COMPUTATION.
C DIVSET.... SUPPLIES DEFAULT PARAMETER VALUES.
C DD7TPR... RETURNS INNER PRODUCT OF TWO VECTORS.
C DITSUM.... PRINTS ITERATION SUMMARY, INITIAL AND FINAL ALF.
C DL7ITV... APPLIES INVERSE-TRANSPOSE OF COMPACT LOWER TRIANG. MATRIX.
C DL7SRT.... COMPUTES (PARTIAL) CHOLESKY FACTORIZATION.
C DL7SVX... ESTIMATES LARGEST SING. VALUE OF LOWER TRIANG. MATRIX.
C DL7SVN... ESTIMATES SMALLEST SING. VALUE OF LOWER TRIANG. MATRIX.
C DN2CVP... PRINTS COVARIANCE MATRIX.
C DN2LRD... COMPUTES COVARIANCE AND REGRESSION DIAGNOSTICS.
C DN2RDP... PRINTS REGRESSION DIAGNOSTICS.
C  DRN2G... UNDERLYING NONLINEAR LEAST-SQUARES SOLVER.
C DQ7APL... APPLIES HOUSEHOLDER TRANSFORMS STORED BY DQ7RFH.
C DQ7RFH.... COMPUTES QR FACT. VIA HOUSEHOLDER TRANSFORMS WITH PIVOTING.
C DQ7RAD.... QR FACT., NO PIVOTING.
C DR7MDC... RETURNS MACHINE-DEP. CONSTANTS.
C DS7CPR... PRINTS LINEAR PARAMETERS AT SOLUTION.
C DV2AXY.... ADDS MULTIPLE OF ONE VECTOR TO ANOTHER.
C DV7CPY.... COPIES ONE VECTOR TO ANOTHER.
C DV7PRM.... PERMUTES A VECTOR.
C DV7SCL... SCALES AND COPIES ONE VECTOR TO ANOTHER.
C DV7SCP... SETS ALL COMPONENTS OF A VECTOR TO A SCALAR.
C
C  ***  LOCAL VARIABLES  ***
C
      LOGICAL NOCOV
      INTEGER AR1, CSAVE1, D1, DR1, DR1L, DRI, DRI1, FDH0, HSAVE, I, I1,
     1        IPIV1, IER, IV1, J1, JLEN, K, LH, LI, LL1O2, MD, N1, N2,
     2        NML, NRAN, PP, PP1, R1, R1L, RD1, TEMP1
      DOUBLE PRECISION SINGTL, T
      DOUBLE PRECISION MACHEP, NEGONE, SNGFAC, ZERO
C
C  ***  SUBSCRIPTS FOR IV AND V  ***
C
      INTEGER AR, CNVCOD, COVMAT, COVREQ, CSAVE, CVRQSV, D, FDH, H,
     1        IERS, IPIVS, IV1SAV, IVNEED, J, LMAT, MODE, NEXTIV, NEXTV,
     2        NFCALL, NFCOV, NFGCAL, NGCALL, NGCOV, PERM, R, RCOND,
     3        RDREQ, RDRQSV, REGD, REGD0, RESTOR, TOOBIG, VNEED
C
C  ***  IV SUBSCRIPT VALUES  ***
C
      PARAMETER (AR=110, CNVCOD=55, COVMAT=26, COVREQ=15, CSAVE=105,
     1           CVRQSV=106, D=27, FDH=74, H=56, IERS=108, IPIVS=109,
     2           IV1SAV=104, IVNEED=3, J=70, LMAT=42, MODE=35,
     3           NEXTIV=46, NEXTV=47, NFCALL=6, NFCOV=52, NFGCAL=7,
     4           NGCALL=30, NGCOV=53, PERM=58, R=61, RCOND=53, RDREQ=57,
     5           RDRQSV=107, REGD=67, REGD0=82, RESTOR=9, TOOBIG=2,
     6           VNEED=4)
      DATA MACHEP/-1.D+0/, NEGONE/-1.D+0/, SNGFAC/1.D+2/, ZERO/0.D+0/
C
C++++++++++++++++++++++++++++++++  BODY  ++++++++++++++++++++++++++++++
C
C
      IF (IV(1) .EQ. 0) CALL DIVSET(1, IV, LIV, LV, V)
      N1 = 1
      NML = N
      IV1 = IV(1)
      IF (IV1 .LE. 2) GO TO 20
C
C  ***  CHECK INPUT INTEGERS  ***
C
      IF (P .LE. 0) GO TO 370
      IF (L .LT. 0) GO TO 370
      IF (N .LE. L) GO TO 370
      IF (LA .LT. N) GO TO 370
      IF (IV1 .LT. 12) GO TO 20
      IF (IV1 .EQ. 14) GO TO 20
      IF (IV1 .EQ. 12) IV(1) = 13
C
C  ***  FRESH START -- COMPUTE STORAGE REQUIREMENTS  ***
C
      IF (IV(1) .GT. 16) GO TO 370
      LL1O2 = L*(L+1)/2
      JLEN = N*P
      I = L + P
      IF (IV(RDREQ) .GT. 0 .AND. IV(COVREQ) .NE. 0) JLEN = I*(N + I + 1)
      IF (IV(1) .NE. 13) GO TO 10
       IV(IVNEED) = IV(IVNEED) + L
       IV(VNEED) = IV(VNEED) + P + 2*N + JLEN + LL1O2 + L
 10   IF (IV(PERM) .LE. AR) IV(PERM) = AR + 1
      CALL  DRN2G(V, V, IV, LIV, LV, N, N, N1, NML, P, V, V, V, ALF)
      IF (IV(1) .NE. 14) GO TO 999
C
C  ***  STORAGE ALLOCATION  ***
C
      IV(IPIVS) = IV(NEXTIV)
      IV(NEXTIV) = IV(NEXTIV) + L
      IV(D) = IV(NEXTV)
      IV(REGD0) = IV(D) + P
      IV(AR) = IV(REGD0) + N
      IV(CSAVE) = IV(AR) + LL1O2
      IV(J) = IV(CSAVE) + L
      IV(R) = IV(J) + JLEN
      IV(NEXTV) = IV(R) + N
      IV(IERS) = 0
      IF (IV1 .EQ. 13) GO TO 999
C
C  ***  SET POINTERS INTO IV AND V  ***
C
 20   AR1 = IV(AR)
      D1 = IV(D)
      DR1 = IV(J)
      DR1L = DR1 + L
      R1 = IV(R)
      R1L = R1 + L
      RD1 = IV(REGD0)
      CSAVE1 = IV(CSAVE)
      NML = N - L
      IF (IV1 .LE. 2) GO TO 50
C
C  ***  IF F.D. HESSIAN WILL BE NEEDED (FOR COVARIANCE OR REG.
C  ***  DIAGNOSTICS), HAVE  DRN2G COMPUTE ONLY THE PART CORRESP.
C  ***  TO ALF WITH C FIXED...
C
      IF (L .LE. 0) GO TO 30
      IV(CVRQSV) = IV(COVREQ)
      IF (IABS(IV(COVREQ)) .GE. 3) IV(COVREQ) = 0
      IV(RDRQSV) = IV(RDREQ)
      IF (IV(RDREQ) .GT. 0) IV(RDREQ) = -1
C
 30   N2 = NML
      CALL  DRN2G(V(D1), V(DR1L), IV, LIV, LV, NML, N, N1, N2, P,
     1            V(R1L), V(RD1), V, ALF)
      IF (IABS(IV(RESTOR)-2) .EQ. 1 .AND. L .GT. 0)
     1        CALL DV7CPY(L, C, V(CSAVE1))
      IV1 = IV(1)
      IF (IV1 .EQ. 2) GO TO 150
      IF (IV1 .GT. 2) GO TO 230
C
C  ***  NEW FUNCTION VALUE (RESIDUAL) NEEDED  ***
C
      IV(IV1SAV) = IV(1)
      IV(1) = IABS(IV1)
      IF (IV(RESTOR) .EQ. 2 .AND. L .GT. 0) CALL DV7CPY(L, V(CSAVE1), C)
      GO TO 999
C
C  ***  COMPUTE NEW RESIDUAL OR GRADIENT  ***
C
 50   IV(1) = IV(IV1SAV)
      MD = IV(MODE)
      IF (MD .LE. 0) GO TO 60
       NML = N
       DR1L = DR1
       R1L = R1
 60   IF (IV(TOOBIG) .NE. 0) GO TO 30
      IF (IABS(IV1) .EQ. 2) GO TO 170
C
C  ***  COMPUTE NEW RESIDUAL  ***
C
      IF (L1 .LE. L) CALL DV7CPY(N, V(R1), Y)
      IF (L1 .GT. L) CALL DV2AXY(N, V(R1), NEGONE, A(1,L1), Y)
      IF (MD .GT. 0) GO TO 120
      IER = 0
      IF (L .LE. 0) GO TO 110
      LL1O2 = L * (L + 1) / 2
      IPIV1 = IV(IPIVS)
      CALL DQ7RFH(IER, IV(IPIV1), N, LA, 0, L, A, V(AR1), LL1O2, C)
C
C *** DETERMINE NUMERICAL RANK OF A ***
C
      IF (MACHEP .LE. ZERO) MACHEP = DR7MDC(3)
      SINGTL = SNGFAC * DBLE(MAX0(L,N)) * MACHEP
      K = L
      IF (IER .NE. 0) K = IER - 1
 70   IF (K .LE. 0) GO TO 90
       T = DL7SVX(K, V(AR1), C, C)
       IF (T .GT. ZERO) T = DL7SVN(K, V(AR1), C, C) / T
       IF (T .GT. SINGTL) GO TO 80
       K = K - 1
       GO TO 70
C
C *** RECORD RANK IN IV(IERS)... IV(IERS) = 0 MEANS FULL RANK,
C *** IV(IERS) .GT. 0 MEANS RANK IV(IERS) - 1.
C
 80   IF (K .GE. L) GO TO 100
 90      IER = K + 1
       CALL DV7SCP(L-K, C(K+1), ZERO)
 100  IV(IERS) = IER
      IF (K .LE. 0) GO TO 110
C
C *** APPLY HOUSEHOLDER TRANSFORMATONS TO RESIDUALS...
C
      CALL DQ7APL(LA, N, K, A, V(R1), IER)
C
C *** COMPUTING C NOW MAY SAVE A FUNCTION EVALUATION AT
C *** THE LAST ITERATION.
C
      CALL DL7ITV(K, C, V(AR1), V(R1))
      CALL DV7PRM(L, IV(IPIV1), C)
C
 110  IF(IV(1) .LT. 2) GO TO 220
      GO TO 999
C
C
C  ***  RESIDUAL COMPUTATION FOR F.D. HESSIAN  ***
C
 120  IF (L .LE. 0) GO TO 140
      DO 130 I = 1, L
 130     CALL DV2AXY(N, V(R1), -C(I), A(1,I), V(R1))
 140  IF (IV(1) .GT. 0) GO TO 30
       IV(1) = 2
       GO TO 160
C
C  ***  NEW GRADIENT (JACOBIAN) NEEDED  ***
C
 150  IV(IV1SAV) = IV1
      IF (IV(NFGCAL) .NE. IV(NFCALL)) IV(1) = 1
 160  CALL DV7SCP(N*P, V(DR1), ZERO)
      GO TO 999
C
C  ***  COMPUTE NEW JACOBIAN  ***
C
 170  NOCOV = MD .LE. P .OR. IABS(IV(COVREQ)) .GE. 3
      FDH0 = DR1 + N*(P+L)
      IF (NDA .LE. 0) GO TO 370
      DO 180 I = 1, NDA
       I1 = IN(1,I) - 1
       IF (I1 .LT. 0) GO TO 180
       J1 = IN(2,I)
       K = DR1 + I1*N
       T = NEGONE
       IF (J1 .LE. L) T = -C(J1)
       CALL DV2AXY(N, V(K), T, DA(1,I), V(K))
       IF (NOCOV) GO TO 180
       IF (J1 .GT. L) GO TO 180
C        ***  ADD IN (L,P) PORTION OF SECOND-ORDER PART OF HESSIAN
C        ***  FOR COVARIANCE OR REG. DIAG. COMPUTATIONS...
       J1 = J1 + P
       K = FDH0 + J1*(J1-1)/2 + I1
       V(K) = V(K) - DD7TPR(N, V(R1), DA(1,I))
 180     CONTINUE
      IF (IV1 .EQ. 2) GO TO 190
       IV(1) = IV1
       GO TO 999
 190  IF (L .LE. 0) GO TO 30
      IF (MD .GT. P) GO TO 240
      IF (MD .GT. 0) GO TO 30
      K = DR1
      IER = IV(IERS)
      NRAN = L
      IF (IER .GT. 0) NRAN = IER - 1
      IF (NRAN .LE. 0) GO TO 210
      DO 200 I = 1, P
       CALL DQ7APL(LA, N, NRAN, A, V(K), IER)
       K = K + N
 200     CONTINUE
 210  CALL DV7CPY(L, V(CSAVE1), C)
 220  IF (IER .EQ. 0) GO TO 30
C
C     *** ADJUST SUBSCRIPTS DESCRIBING R AND DR...
C
       NRAN = IER - 1
       DR1L = DR1 + NRAN
       NML = N - NRAN
       R1L = R1 + NRAN
       GO TO 30
C
C  ***  CONVERGENCE OR LIMIT REACHED  ***
C
 230  IF (L .LE. 0) GO TO 350
      IV(COVREQ) = IV(CVRQSV)
      IV(RDREQ) = IV(RDRQSV)
      IF (IV(1) .GT. 6) GO TO 360
      IF (MOD(IV(RDREQ),4) .EQ. 0) GO TO 360
      IF (IV(FDH) .LE. 0 .AND. IABS(IV(COVREQ)) .LT. 3) GO TO 360
      IF (IV(REGD) .GT. 0) GO TO 360
      IF (IV(COVMAT) .GT. 0) GO TO 360
C
C  *** PREPARE TO FINISH COMPUTING COVARIANCE MATRIX AND REG. DIAG. ***
C
      PP = L + P
      I = 0
      IF (MOD(IV(RDREQ),4) .GE. 2) I = 1
      IF (MOD(IV(RDREQ),2) .EQ. 1 .AND. IABS(IV(COVREQ)) .EQ. 1) I = I+2
      IV(MODE) = PP + I
      I = DR1 + N*PP
      K = P * (P + 1) / 2
      I1 = IV(LMAT)
      CALL DV7CPY(K, V(I), V(I1))
      I = I + K
      CALL DV7SCP(PP*(PP+1)/2 - K, V(I), ZERO)
      IV(NFCOV) = IV(NFCOV) + 1
      IV(NFCALL) = IV(NFCALL) + 1
      IV(NFGCAL) = IV(NFCALL)
      IV(CNVCOD) = IV(1)
      IV(IV1SAV) = -1
      IV(1) = 1
      IV(NGCALL) = IV(NGCALL) + 1
      IV(NGCOV) = IV(NGCOV) + 1
      GO TO 999
C
C  ***  FINISH COVARIANCE COMPUTATION  ***
C
 240  I = DR1 + N*P
      DO 250 I1 = 1, L
       CALL DV7SCL(N, V(I), NEGONE, A(1,I1))
       I = I + N
 250     CONTINUE
      PP = L + P
      HSAVE = IV(H)
      K = DR1 + N*PP
      LH = PP * (PP + 1) / 2
      IF (IABS(IV(COVREQ)) .LT. 3) GO TO 270
      I = IV(MODE) - 4
      IF (I .GE. PP) GO TO 260
      CALL DV7SCP(LH, V(K), ZERO)
      CALL DQ7RAD(N, N, PP, V, .FALSE., V(K), V(DR1), V)
      IV(MODE) = I + 8
      IV(1) = 2
      IV(NGCALL) = IV(NGCALL) + 1
      IV(NGCOV) = IV(NGCOV) + 1
      GO TO 160
C
 260  IV(MODE) = I
      GO TO 300
C
 270  PP1 = P + 1
      DRI = DR1 + N*P
      LI = K + P*PP1/2
      DO 290 I = PP1, PP
       DRI1 = DR1
       DO 280 I1 = 1, I
          V(LI) = V(LI) + DD7TPR(N, V(DRI), V(DRI1))
          LI = LI + 1
          DRI1 = DRI1 + N
 280        CONTINUE
       DRI = DRI + N
 290     CONTINUE
      CALL DL7SRT(PP1, PP, V(K), V(K), I)
      IF (I .NE. 0) GO TO 310
 300  TEMP1 = K + LH
      T = DL7SVN(PP, V(K), V(TEMP1), V(TEMP1))
      IF (T .LE. ZERO) GO TO 310
      T = T / DL7SVX(PP, V(K), V(TEMP1), V(TEMP1))
      V(RCOND) = T
      IF (T .GT. DR7MDC(4)) GO TO 320
 310     IV(REGD) = -1
       IV(COVMAT) = -1
       IV(FDH) = -1
       GO TO 340
 320  IV(H) = TEMP1
      IV(FDH) = IABS(HSAVE)
      IF (IV(MODE) - PP .LT. 2) GO TO 330
       I = IV(H)
       CALL DV7SCP(LH, V(I), ZERO)
 330  CALL DN2LRD(V(DR1), IV, V(K), LH, LIV, LV, N, N, PP, V(R1),
     1            V(RD1), V)
 340  CALL DC7VFN(IV, V(K), LH, LIV, LV, N, PP, V)
      IV(H) = HSAVE
C
 350  IF (IV(REGD) .EQ. 1) IV(REGD) = RD1
 360  IF (IV(1) .LE. 11) CALL DS7CPR(C, IV, L, LIV)
      IF (IV(1) .GT. 6) GO TO 999
       CALL DN2CVP(IV, LIV, LV, P+L, V)
       CALL DN2RDP(IV, LIV, LV, N, V(RD1), V)
       GO TO 999
C
 370  IV(1) = 66
      CALL DITSUM(V, V, IV, LIV, LV, P, V, ALF)
C
 999  RETURN
C
C  ***  LAST CARD OF  DRNSG FOLLOWS  ***
      END
      SUBROUTINE DL7TVM(N, X, L, Y)
C
C  ***  COMPUTE  X = (L**T)*Y, WHERE  L  IS AN  N X N  LOWER
C  ***  TRIANGULAR MATRIX STORED COMPACTLY BY ROWS.  X AND Y MAY
C  ***  OCCUPY THE SAME STORAGE.  ***
C
      INTEGER N
      DOUBLE PRECISION X(N), L(1), Y(N)
C     DIMENSION L(N*(N+1)/2)
      INTEGER I, IJ, I0, J
      DOUBLE PRECISION YI, ZERO
      PARAMETER (ZERO=0.D+0)
C
      I0 = 0
      DO 20 I = 1, N
       YI = Y(I)
       X(I) = ZERO
       DO 10 J = 1, I
            IJ = I0 + J
            X(J) = X(J) + YI*L(IJ)
 10           CONTINUE
       I0 = I0 + I
 20      CONTINUE
      RETURN
C  ***  LAST CARD OF DL7TVM FOLLOWS  ***
      END
      SUBROUTINE DL7ITV(N, X, L, Y)
C
C  ***  SOLVE  (L**T)*X = Y,  WHERE  L  IS AN  N X N  LOWER TRIANGULAR
C  ***  MATRIX STORED COMPACTLY BY ROWS.  X AND Y MAY OCCUPY THE SAME
C  ***  STORAGE.  ***
C
      INTEGER N
      DOUBLE PRECISION X(N), L(1), Y(N)
      INTEGER I, II, IJ, IM1, I0, J, NP1
      DOUBLE PRECISION XI, ZERO
      PARAMETER (ZERO=0.D+0)
C
      DO 10 I = 1, N
 10      X(I) = Y(I)
      NP1 = N + 1
      I0 = N*(N+1)/2
      DO 30 II = 1, N
       I = NP1 - II
       XI = X(I)/L(I0)
       X(I) = XI
       IF (I .LE. 1) GO TO 999
       I0 = I0 - I
       IF (XI .EQ. ZERO) GO TO 30
       IM1 = I - 1
       DO 20 J = 1, IM1
            IJ = I0 + J
            X(J) = X(J) - XI*L(IJ)
 20           CONTINUE
 30      CONTINUE
 999  RETURN
C  ***  LAST CARD OF DL7ITV FOLLOWS  ***
      END
      SUBROUTINE DRMNGB(B, D, FX, G, IV, LIV, LV, N, V, X)
C
C  ***  CARRY OUT  DMNGB (SIMPLY BOUNDED MINIMIZATION) ITERATIONS,
C  ***  USING DOUBLE-DOGLEG/BFGS STEPS.
C
C  ***  PARAMETER DECLARATIONS  ***
C
      INTEGER LIV, LV, N
      INTEGER IV(LIV)
      DOUBLE PRECISION B(2,N), D(N), FX, G(N), V(LV), X(N)
C
C--------------------------  PARAMETER USAGE  --------------------------
C
C B.... VECTOR OF LOWER AND UPPER BOUNDS ON X.
C D.... SCALE VECTOR.
C FX... FUNCTION VALUE.
C G.... GRADIENT VECTOR.
C IV... INTEGER VALUE ARRAY.
C LIV.. LENGTH OF IV (AT LEAST 59) + N.
C LV... LENGTH OF V (AT LEAST 71 + N*(N+19)/2).
C N.... NUMBER OF VARIABLES (COMPONENTS IN X AND G).
C V.... FLOATING-POINT VALUE ARRAY.
C X.... VECTOR OF PARAMETERS TO BE OPTIMIZED.
C
C  ***  DISCUSSION  ***
C
C        PARAMETERS IV, N, V, AND X ARE THE SAME AS THE CORRESPONDING
C     ONES TO  DMNGB (WHICH SEE), EXCEPT THAT V CAN BE SHORTER (SINCE
C     THE PART OF V THAT  DMNGB USES FOR STORING G IS NOT NEEDED).
C     MOREOVER, COMPARED WITH  DMNGB, IV(1) MAY HAVE THE TWO ADDITIONAL
C     OUTPUT VALUES 1 AND 2, WHICH ARE EXPLAINED BELOW, AS IS THE USE
C     OF IV(TOOBIG) AND IV(NFGCAL).  THE VALUE IV(G), WHICH IS AN
C     OUTPUT VALUE FROM  DMNGB (AND SMSNOB), IS NOT REFERENCED BY
C     DRMNGB OR THE SUBROUTINES IT CALLS.
C        FX AND G NEED NOT HAVE BEEN INITIALIZED WHEN DRMNGB IS CALLED
C     WITH IV(1) = 12, 13, OR 14.
C
C IV(1) = 1 MEANS THE CALLER SHOULD SET FX TO F(X), THE FUNCTION VALUE
C             AT X, AND CALL DRMNGB AGAIN, HAVING CHANGED NONE OF THE
C             OTHER PARAMETERS.  AN EXCEPTION OCCURS IF F(X) CANNOT BE
C             (E.G. IF OVERFLOW WOULD OCCUR), WHICH MAY HAPPEN BECAUSE
C             OF AN OVERSIZED STEP.  IN THIS CASE THE CALLER SHOULD SET
C             IV(TOOBIG) = IV(2) TO 1, WHICH WILL CAUSE DRMNGB TO IG-
C             NORE FX AND TRY A SMALLER STEP.  THE PARAMETER NF THAT
C              DMNGB PASSES TO CALCF (FOR POSSIBLE USE BY CALCG) IS A
C             COPY OF IV(NFCALL) = IV(6).
C IV(1) = 2 MEANS THE CALLER SHOULD SET G TO G(X), THE GRADIENT VECTOR
C             OF F AT X, AND CALL DRMNGB AGAIN, HAVING CHANGED NONE OF
C             THE OTHER PARAMETERS EXCEPT POSSIBLY THE SCALE VECTOR D
C             WHEN IV(DTYPE) = 0.  THE PARAMETER NF THAT  DMNGB PASSES
C             TO CALCG IS IV(NFGCAL) = IV(7).  IF G(X) CANNOT BE
C             EVALUATED, THEN THE CALLER MAY SET IV(NFGCAL) TO 0, IN
C             WHICH CASE DRMNGB WILL RETURN WITH IV(1) = 65.
C.
C  ***  GENERAL  ***
C
C     CODED BY DAVID M. GAY (DECEMBER 1979).  REVISED SEPT. 1982.
C     THIS SUBROUTINE WAS WRITTEN IN CONNECTION WITH RESEARCH SUPPORTED
C     IN PART BY THE NATIONAL SCIENCE FOUNDATION UNDER GRANTS
C     MCS-7600324 AND MCS-7906671.
C
C        (SEE  DMNG FOR REFERENCES.)
C
C+++++++++++++++++++++++++++  DECLARATIONS  ++++++++++++++++++++++++++++
C
C  ***  LOCAL VARIABLES  ***
C
      INTEGER DG1, DSTEP1, DUMMY, G01, I, I1, IPI, IPN, J, K, L, LSTGST,
     1        N1, NP1, NWTST1, RSTRST, STEP1, TEMP0, TEMP1, TD1, TG1,
     2        W1, X01, Z
      DOUBLE PRECISION GI, T, XI
C
C     ***  CONSTANTS  ***
C
      DOUBLE PRECISION NEGONE, ONE, ONEP2, ZERO
C
C  ***  NO INTRINSIC FUNCTIONS  ***
C
C  ***  EXTERNAL FUNCTIONS AND SUBROUTINES  ***
C
      LOGICAL STOPX
      DOUBLE PRECISION DD7TPR, DRLDST, DV2NRM
      EXTERNAL DA7SST, DD7DGB,DIVSET, DD7TPR, I7SHFT,DITSUM, DL7TVM,
     1         DL7UPD,DL7VML,DPARCK, DQ7RSH, DRLDST, STOPX, DV2NRM,
     2        DV2AXY,DV7CPY, DV7IPR, DV7SCP, DV7VMP, DW7ZBF
C
C DA7SST.... ASSESSES CANDIDATE STEP.
C DD7DGB... COMPUTES SIMPLY BOUNDED DOUBLE-DOGLEG (CANDIDATE) STEP.
C DIVSET.... SUPPLIES DEFAULT IV AND V INPUT COMPONENTS.
C DD7TPR... RETURNS INNER PRODUCT OF TWO VECTORS.
C I7SHFT... CYCLICALLLY SHIFTS AN ARRAY OF INTEGERS.
C DITSUM.... PRINTS ITERATION SUMMARY AND INFO ON INITIAL AND FINAL X.
C DL7TVM... MULTIPLIES TRANSPOSE OF LOWER TRIANGLE TIMES VECTOR.
C LUPDT.... UPDATES CHOLESKY FACTOR OF HESSIAN APPROXIMATION.
C DL7VML.... MULTIPLIES LOWER TRIANGLE TIMES VECTOR.
C DPARCK.... CHECKS VALIDITY OF INPUT IV AND V VALUES.
C DQ7RSH... CYCLICALLY SHIFTS CHOLESKY FACTOR.
C DRLDST... COMPUTES V(RELDX) = RELATIVE STEP SIZE.
C STOPX.... RETURNS .TRUE. IF THE BREAK KEY HAS BEEN PRESSED.
C DV2NRM... RETURNS THE 2-NORM OF A VECTOR.
C DV2AXY.... COMPUTES SCALAR TIMES ONE VECTOR PLUS ANOTHER.
C DV7CPY.... COPIES ONE VECTOR TO ANOTHER.
C DV7IPR... CYCLICALLY SHIFTS A FLOATING-POINT ARRAY.
C DV7SCP... SETS ALL ELEMENTS OF A VECTOR TO A SCALAR.
C DV7VMP... MULTIPLIES VECTOR BY VECTOR RAISED TO POWER (COMPONENTWISE).
C DW7ZBF... COMPUTES W AND Z FOR DL7UPD CORRESPONDING TO BFGS UPDATE.
C
C  ***  SUBSCRIPTS FOR IV AND V  ***
C
      INTEGER CNVCOD, DG, DGNORM, DINIT, DSTNRM, F, F0, FDIF,
     1        GTSTEP, INCFAC, INITH, IRC, IVNEED, KAGQT, LMAT,
     2        LMAX0, LMAXS, MODE, MODEL, MXFCAL, MXITER, NC, NEXTIV,
     3        NEXTV, NFCALL, NFGCAL, NGCALL, NITER, NWTSTP, PERM,
     4        PREDUC, RADFAC, RADINC, RADIUS, RAD0, RELDX, RESTOR, STEP,
     4        STGLIM, STLSTG, TOOBIG, TUNER4, TUNER5, VNEED, XIRC, X0
C
C  ***  IV SUBSCRIPT VALUES  ***
C
C  ***  (NOTE THAT NC IS STORED IN IV(G0)) ***
C
      PARAMETER (CNVCOD=55, DG=37, INITH=25, IRC=29, IVNEED=3, KAGQT=33,
     1           MODE=35, MODEL=5, MXFCAL=17, MXITER=18, NC=48,
     2           NEXTIV=46, NEXTV=47, NFCALL=6, NFGCAL=7, NGCALL=30,
     3           NITER=31, NWTSTP=34, PERM=58, RADINC=8, RESTOR=9,
     4           STEP=40, STGLIM=11, STLSTG=41, TOOBIG=2, XIRC=13,
     5           X0=43)
C
C  ***  V SUBSCRIPT VALUES  ***
C
      PARAMETER (DGNORM=1, DINIT=38, DSTNRM=2, F=10, F0=13, FDIF=11,
     1           GTSTEP=4, INCFAC=23, LMAT=42, LMAX0=35, LMAXS=36,
     2           PREDUC=7, RADFAC=16, RADIUS=8, RAD0=9, RELDX=17,
     3           TUNER4=29, TUNER5=30, VNEED=4)
C
      PARAMETER (NEGONE=-1.D+0, ONE=1.D+0, ONEP2=1.2D+0, ZERO=0.D+0)
C
C+++++++++++++++++++++++++++++++  BODY  ++++++++++++++++++++++++++++++++
C
      I = IV(1)
      IF (I .EQ. 1) GO TO 70
      IF (I .EQ. 2) GO TO 80
C
C  ***  CHECK VALIDITY OF IV AND V INPUT VALUES  ***
C
      IF (IV(1) .EQ. 0) CALL DIVSET(2, IV, LIV, LV, V)
      IF (IV(1) .LT. 12) GO TO 10
      IF (IV(1) .GT. 13) GO TO 10
       IV(VNEED) = IV(VNEED) + N*(N+19)/2
       IV(IVNEED) = IV(IVNEED) + N
 10   CALL DPARCK(2, D, IV, LIV, LV, N, V)
      I = IV(1) - 2
      IF (I .GT. 12) GO TO 999
      GO TO (250, 250, 250, 250, 250, 250, 190, 150, 190, 20, 20, 30), I
C
C  ***  STORAGE ALLOCATION  ***
C
 20   L = IV(LMAT)
      IV(X0) = L + N*(N+1)/2
      IV(STEP) = IV(X0) + 2*N
      IV(STLSTG) = IV(STEP) + 2*N
      IV(NWTSTP) = IV(STLSTG) + N
      IV(DG) = IV(NWTSTP) + 2*N
      IV(NEXTV) = IV(DG) + 2*N
      IV(NEXTIV) = IV(PERM) + N
      IF (IV(1) .NE. 13) GO TO 30
       IV(1) = 14
       GO TO 999
C
C  ***  INITIALIZATION  ***
C
 30   IV(NITER) = 0
      IV(NFCALL) = 1
      IV(NGCALL) = 1
      IV(NFGCAL) = 1
      IV(MODE) = -1
      IV(MODEL) = 1
      IV(STGLIM) = 1
      IV(TOOBIG) = 0
      IV(CNVCOD) = 0
      IV(RADINC) = 0
      IV(NC) = N
      V(RAD0) = ZERO
C
C  ***  CHECK CONSISTENCY OF B AND INITIALIZE IP ARRAY  ***
C
      IPI = IV(PERM)
      DO 40 I = 1, N
       IV(IPI) = I
       IPI = IPI + 1
       IF (B(1,I) .GT. B(2,I)) GO TO 410
 40      CONTINUE
C
      IF (V(DINIT) .GE. ZERO) CALL DV7SCP(N, D, V(DINIT))
      IF (IV(INITH) .NE. 1) GO TO 60
C
C     ***  SET THE INITIAL HESSIAN APPROXIMATION TO DIAG(D)**-2  ***
C
       L = IV(LMAT)
       CALL DV7SCP(N*(N+1)/2, V(L), ZERO)
       K = L - 1
       DO 50 I = 1, N
            K = K + I
            T = D(I)
            IF (T .LE. ZERO) T = ONE
            V(K) = T
 50           CONTINUE
C
C  ***  GET INITIAL FUNCTION VALUE  ***
C
 60   IV(1) = 1
      GO TO 440
C
 70   V(F) = FX
      IF (IV(MODE) .GE. 0) GO TO 250
      V(F0) = FX
      IV(1) = 2
      IF (IV(TOOBIG) .EQ. 0) GO TO 999
       IV(1) = 63
       GO TO 430
C
C  ***  MAKE SURE GRADIENT COULD BE COMPUTED  ***
C
 80   IF (IV(TOOBIG) .EQ. 0) GO TO 90
       IV(1) = 65
       GO TO 430
C
C  ***  CHOOSE INITIAL PERMUTATION  ***
C
 90   IPI = IV(PERM)
      IPN = IPI + N
      N1 = N
      NP1 = N + 1
      L = IV(LMAT)
      W1 = IV(NWTSTP) + N
      K = N - IV(NC)
      DO 120 I = 1, N
       IPN = IPN - 1
       J = IV(IPN)
       IF (B(1,J) .GE. B(2,J)) GO TO 100
       XI = X(J)
       GI = G(J)
       IF (XI .LE. B(1,J) .AND. GI .GT. ZERO) GO TO 100
       IF (XI .GE. B(2,J) .AND. GI .LT. ZERO) GO TO 100
C           *** DISALLOW CONVERGENCE IF X(J) HAS JUST BEEN FREED ***
          IF (I .LE. K) IV(CNVCOD) = 0
          GO TO 120
 100     I1 = NP1 - I
       IF (I1 .GE. N1) GO TO 110
          CALL I7SHFT(N1, I1, IV(IPI))
          CALL DQ7RSH(I1, N1, .FALSE., G, V(L), V(W1))
 110        N1 = N1 - 1
 120     CONTINUE
C
      IV(NC) = N1
      V(DGNORM) = ZERO
      IF (N1 .LE. 0) GO TO 130
       DG1 = IV(DG)
       CALL DV7VMP(N, V(DG1), G, D, -1)
       CALL DV7IPR(N, IV(IPI), V(DG1))
       V(DGNORM) = DV2NRM(N1, V(DG1))
 130  IF (IV(CNVCOD) .NE. 0) GO TO 420
      IF (IV(MODE) .EQ. 0) GO TO 370
C
C  ***  ALLOW FIRST STEP TO HAVE SCALED 2-NORM AT MOST V(LMAX0)  ***
C
      V(RADIUS) = V(LMAX0)
C
      IV(MODE) = 0
C
C
C-----------------------------  MAIN LOOP  -----------------------------
C
C
C  ***  PRINT ITERATION SUMMARY, CHECK ITERATION LIMIT  ***
C
 140  CALL DITSUM(D, G, IV, LIV, LV, N, V, X)
 150  K = IV(NITER)
      IF (K .LT. IV(MXITER)) GO TO 160
       IV(1) = 10
       GO TO 430
C
C  ***  UPDATE RADIUS  ***
C
 160  IV(NITER) = K + 1
      IF (K .EQ. 0) GO TO 170
      T = V(RADFAC) * V(DSTNRM)
      IF (V(RADFAC) .LT. ONE .OR. T .GT. V(RADIUS)) V(RADIUS) = T
C
C  ***  INITIALIZE FOR START OF NEXT ITERATION  ***
C
 170  X01 = IV(X0)
      V(F0) = V(F)
      IV(IRC) = 4
      IV(KAGQT) = -1
C
C     ***  COPY X TO X0  ***
C
      CALL DV7CPY(N, V(X01), X)
C
C  ***  CHECK STOPX AND FUNCTION EVALUATION LIMIT  ***
C
 180  IF (.NOT. STOPX(DUMMY)) GO TO 200
       IV(1) = 11
       GO TO 210
C
C     ***  COME HERE WHEN RESTARTING AFTER FUNC. EVAL. LIMIT OR STOPX.
C
 190  IF (V(F) .GE. V(F0)) GO TO 200
       V(RADFAC) = ONE
       K = IV(NITER)
       GO TO 160
C
 200  IF (IV(NFCALL) .LT. IV(MXFCAL)) GO TO 220
       IV(1) = 9
 210     IF (V(F) .GE. V(F0)) GO TO 430
C
C        ***  IN CASE OF STOPX OR FUNCTION EVALUATION LIMIT WITH
C        ***  IMPROVED V(F), EVALUATE THE GRADIENT AT X.
C
            IV(CNVCOD) = IV(1)
            GO TO 360
C
C. . . . . . . . . . . . .  COMPUTE CANDIDATE STEP  . . . . . . . . . .
C
 220  STEP1 = IV(STEP)
      DG1 = IV(DG)
      NWTST1 = IV(NWTSTP)
      W1 = NWTST1 + N
      DSTEP1 = STEP1 + N
      IPI = IV(PERM)
      L = IV(LMAT)
      TG1 = DG1 + N
      X01 = IV(X0)
      TD1 = X01 + N
      CALL DD7DGB(B, D, V(DG1), V(DSTEP1), G, IV(IPI), IV(KAGQT),
     1            V(L), LV, N, IV(NC), V(NWTST1), V(STEP1), V(TD1),
     2            V(TG1), V, V(W1), V(X01))
      IF (IV(IRC) .NE. 6) GO TO 230
       IF (IV(RESTOR) .NE. 2) GO TO 250
       RSTRST = 2
       GO TO 260
C
C  ***  CHECK WHETHER EVALUATING F(X0 + STEP) LOOKS WORTHWHILE  ***
C
 230  IV(TOOBIG) = 0
      IF (V(DSTNRM) .LE. ZERO) GO TO 250
      IF (IV(IRC) .NE. 5) GO TO 240
      IF (V(RADFAC) .LE. ONE) GO TO 240
      IF (V(PREDUC) .GT. ONEP2 * V(FDIF)) GO TO 240
       IF (IV(RESTOR) .NE. 2) GO TO 250
       RSTRST = 0
       GO TO 260
C
C  ***  COMPUTE F(X0 + STEP)  ***
C
 240  CALL DV2AXY(N, X, ONE, V(STEP1), V(X01))
      IV(NFCALL) = IV(NFCALL) + 1
      IV(1) = 1
      GO TO 440
C
C. . . . . . . . . . . . .  ASSESS CANDIDATE STEP  . . . . . . . . . . .
C
 250  RSTRST = 3
 260  X01 = IV(X0)
      V(RELDX) = DRLDST(N, D, X, V(X01))
      CALL DA7SST(IV, LIV, LV, V)
      STEP1 = IV(STEP)
      LSTGST = IV(STLSTG)
      I = IV(RESTOR) + 1
      GO TO (300, 270, 280, 290), I
 270  CALL DV7CPY(N, X, V(X01))
      GO TO 300
 280   CALL DV7CPY(N, V(LSTGST), X)
       GO TO 300
 290     CALL DV7CPY(N, X, V(LSTGST))
       CALL DV2AXY(N, V(STEP1), NEGONE, V(X01), X)
       V(RELDX) = DRLDST(N, D, X, V(X01))
       IV(RESTOR) = RSTRST
C
 300  K = IV(IRC)
      GO TO (310,340,340,340,310,320,330,330,330,330,330,330,400,370), K
C
C     ***  RECOMPUTE STEP WITH CHANGED RADIUS  ***
C
 310     V(RADIUS) = V(RADFAC) * V(DSTNRM)
       GO TO 180
C
C  ***  COMPUTE STEP OF LENGTH V(LMAXS) FOR SINGULAR CONVERGENCE TEST.
C
 320  V(RADIUS) = V(LMAXS)
      GO TO 220
C
C  ***  CONVERGENCE OR FALSE CONVERGENCE  ***
C
 330  IV(CNVCOD) = K - 4
      IF (V(F) .GE. V(F0)) GO TO 420
       IF (IV(XIRC) .EQ. 14) GO TO 420
            IV(XIRC) = 14
C
C. . . . . . . . . . . .  PROCESS ACCEPTABLE STEP  . . . . . . . . . . .
C
 340  X01 = IV(X0)
      STEP1 = IV(STEP)
      CALL DV2AXY(N, V(STEP1), NEGONE, V(X01), X)
      IF (IV(IRC) .NE. 3) GO TO 360
C
C     ***  SET  TEMP1 = HESSIAN * STEP  FOR USE IN GRADIENT TESTS  ***
C
C     ***  USE X0 AS TEMPORARY...
C
       IPI = IV(PERM)
       CALL DV7CPY(N, V(X01), V(STEP1))
       CALL DV7IPR(N, IV(IPI), V(X01))
       L = IV(LMAT)
       CALL DL7TVM(N, V(X01), V(L), V(X01))
       CALL DL7VML(N, V(X01), V(L), V(X01))
C
C        *** UNPERMUTE X0 INTO TEMP1 ***
C
       TEMP1 = IV(STLSTG)
       TEMP0 = TEMP1 - 1
       DO 350 I = 1, N
          J = IV(IPI)
          IPI = IPI + 1
          K = TEMP0 + J
          V(K) = V(X01)
          X01 = X01 + 1
 350        CONTINUE
C
C  ***  SAVE OLD GRADIENT, COMPUTE NEW ONE  ***
C
 360  G01 = IV(NWTSTP) + N
      CALL DV7CPY(N, V(G01), G)
      IV(NGCALL) = IV(NGCALL) + 1
      IV(TOOBIG) = 0
      IV(1) = 2
      GO TO 999
C
C  ***  INITIALIZATIONS -- G0 = G - G0, ETC.  ***
C
 370  G01 = IV(NWTSTP) + N
      CALL DV2AXY(N, V(G01), NEGONE, V(G01), G)
      STEP1 = IV(STEP)
      TEMP1 = IV(STLSTG)
      IF (IV(IRC) .NE. 3) GO TO 390
C
C  ***  SET V(RADFAC) BY GRADIENT TESTS  ***
C
C     ***  SET  TEMP1 = DIAG(D)**-1 * (HESSIAN*STEP + (G(X0)-G(X)))  ***
C
       CALL DV2AXY(N, V(TEMP1), NEGONE, V(G01), V(TEMP1))
       CALL DV7VMP(N, V(TEMP1), V(TEMP1), D, -1)
C
C        ***  DO GRADIENT TESTS  ***
C
       IF (DV2NRM(N, V(TEMP1)) .LE. V(DGNORM) * V(TUNER4))
     1                  GO TO 380
            IF (DD7TPR(N, G, V(STEP1))
     1                  .GE. V(GTSTEP) * V(TUNER5))  GO TO 390
 380               V(RADFAC) = V(INCFAC)
C
C  ***  UPDATE H, LOOP  ***
C
 390  W1 = IV(NWTSTP)
      Z = IV(X0)
      L = IV(LMAT)
      IPI = IV(PERM)
      CALL DV7IPR(N, IV(IPI), V(STEP1))
      CALL DV7IPR(N, IV(IPI), V(G01))
      CALL DW7ZBF(V(L), N, V(STEP1), V(W1), V(G01), V(Z))
C
C     ** USE THE N-VECTORS STARTING AT V(STEP1) AND V(G01) FOR SCRATCH..
      CALL DL7UPD(V(TEMP1), V(STEP1), V(L), V(G01), V(L), N, V(W1),
     1            V(Z))
      IV(1) = 2
      GO TO 140
C
C. . . . . . . . . . . . . .  MISC. DETAILS  . . . . . . . . . . . . . .
C
C  ***  BAD PARAMETERS TO ASSESS  ***
C
 400  IV(1) = 64
      GO TO 430
C
C  ***  INCONSISTENT B  ***
C
 410  IV(1) = 82
      GO TO 430
C
C  ***  PRINT SUMMARY OF FINAL ITERATION AND OTHER REQUESTED ITEMS  ***
C
 420  IV(1) = IV(CNVCOD)
      IV(CNVCOD) = 0
 430  CALL DITSUM(D, G, IV, LIV, LV, N, V, X)
      GO TO 999
C
C  ***  PROJECT X INTO FEASIBLE REGION (PRIOR TO COMPUTING F OR G)  ***
C
 440  DO 450 I = 1, N
       IF (X(I) .LT. B(1,I)) X(I) = B(1,I)
       IF (X(I) .GT. B(2,I)) X(I) = B(2,I)
 450     CONTINUE
C
 999  RETURN
C
C  ***  LAST CARD OF DRMNGB FOLLOWS  ***
      END
      SUBROUTINE DS7GRD (ALPHA, D, ETA0, FX, G, IRC, N, W, X)
C
C  ***  COMPUTE FINITE DIFFERENCE GRADIENT BY STWEART*S SCHEME  ***
C
C     ***  PARAMETERS  ***
C
      INTEGER IRC, N
      DOUBLE PRECISION ALPHA(N), D(N), ETA0, FX, G(N), W(6), X(N)
C
C.......................................................................
C
C     ***  PURPOSE  ***
C
C        THIS SUBROUTINE USES AN EMBELLISHED FORM OF THE FINITE-DIFFER-
C     ENCE SCHEME PROPOSED BY STEWART (REF. 1) TO APPROXIMATE THE
C     GRADIENT OF THE FUNCTION F(X), WHOSE VALUES ARE SUPPLIED BY
C     REVERSE COMMUNICATION.
C
C     ***  PARAMETER DESCRIPTION  ***
C
C  ALPHA IN  (APPROXIMATE) DIAGONAL ELEMENTS OF THE HESSIAN OF F(X).
C      D IN  SCALE VECTOR SUCH THAT D(I)*X(I), I = 1,...,N, ARE IN
C             COMPARABLE UNITS.
C   ETA0 IN  ESTIMATED BOUND ON RELATIVE ERROR IN THE FUNCTION VALUE...
C             (TRUE VALUE) = (COMPUTED VALUE)*(1+E),   WHERE
C             ABS(E) .LE. ETA0.
C     FX I/O ON INPUT,  FX  MUST BE THE COMPUTED VALUE OF F(X).  ON
C             OUTPUT WITH IRC = 0, FX HAS BEEN RESTORED TO ITS ORIGINAL
C             VALUE, THE ONE IT HAD WHEN DS7GRD WAS LAST CALLED WITH
C             IRC = 0.
C      G I/O ON INPUT WITH IRC = 0, G SHOULD CONTAIN AN APPROXIMATION
C             TO THE GRADIENT OF F NEAR X, E.G., THE GRADIENT AT THE
C             PREVIOUS ITERATE.  WHEN DS7GRD RETURNS WITH IRC = 0, G IS
C             THE DESIRED FINITE-DIFFERENCE APPROXIMATION TO THE
C             GRADIENT AT X.
C    IRC I/O INPUT/RETURN CODE... BEFORE THE VERY FIRST CALL ON DS7GRD,
C             THE CALLER MUST SET IRC TO 0.  WHENEVER DS7GRD RETURNS A
C             NONZERO VALUE FOR IRC, IT HAS PERTURBED SOME COMPONENT OF
C             X... THE CALLER SHOULD EVALUATE F(X) AND CALL DS7GRD
C             AGAIN WITH FX = F(X).
C      N IN  THE NUMBER OF VARIABLES (COMPONENTS OF X) ON WHICH F
C             DEPENDS.
C      X I/O ON INPUT WITH IRC = 0, X IS THE POINT AT WHICH THE
C             GRADIENT OF F IS DESIRED.  ON OUTPUT WITH IRC NONZERO, X
C             IS THE POINT AT WHICH F SHOULD BE EVALUATED.  ON OUTPUT
C             WITH IRC = 0, X HAS BEEN RESTORED TO ITS ORIGINAL VALUE
C             (THE ONE IT HAD WHEN DS7GRD WAS LAST CALLED WITH IRC = 0)
C             AND G CONTAINS THE DESIRED GRADIENT APPROXIMATION.
C      W I/O WORK VECTOR OF LENGTH 6 IN WHICH DS7GRD SAVES CERTAIN
C             QUANTITIES WHILE THE CALLER IS EVALUATING F(X) AT A
C             PERTURBED X.
C
C     ***  APPLICATION AND USAGE RESTRICTIONS  ***
C
C        THIS ROUTINE IS INTENDED FOR USE WITH QUASI-NEWTON ROUTINES
C     FOR UNCONSTRAINED MINIMIZATION (IN WHICH CASE  ALPHA  COMES FROM
C     THE DIAGONAL OF THE QUASI-NEWTON HESSIAN APPROXIMATION).
C
C     ***  ALGORITHM NOTES  ***
C
C        THIS CODE DEPARTS FROM THE SCHEME PROPOSED BY STEWART (REF. 1)
C     IN ITS GUARDING AGAINST OVERLY LARGE OR SMALL STEP SIZES AND ITS
C     HANDLING OF SPECIAL CASES (SUCH AS ZERO COMPONENTS OF ALPHA OR G).
C
C     ***  REFERENCES  ***
C
C 1. STEWART, G.W. (1967), A MODIFICATION OF DAVIDON*S MINIMIZATION
C        METHOD TO ACCEPT DIFFERENCE APPROXIMATIONS OF DERIVATIVES,
C        J. ASSOC. COMPUT. MACH. 14, PP. 72-83.
C
C     ***  HISTORY  ***
C
C     DESIGNED AND CODED BY DAVID M. GAY (SUMMER 1977/SUMMER 1980).
C
C     ***  GENERAL  ***
C
C        THIS ROUTINE WAS PREPARED IN CONNECTION WITH WORK SUPPORTED BY
C     THE NATIONAL SCIENCE FOUNDATION UNDER GRANTS MCS76-00324 AND
C     MCS-7906671.
C
C.......................................................................
C
C     *****  EXTERNAL FUNCTION  *****
C
      DOUBLE PRECISION DR7MDC
      EXTERNAL DR7MDC
C DR7MDC... RETURNS MACHINE-DEPENDENT CONSTANTS.
C
C     ***** INTRINSIC FUNCTIONS *****
C/+
      DOUBLE PRECISION DSQRT
C/
C     ***** LOCAL VARIABLES *****
C
      INTEGER FH, FX0, HSAVE, I, XISAVE
      DOUBLE PRECISION AAI, AFX, AFXETA, AGI, ALPHAI, AXI, AXIBAR,
     1                 DISCON, ETA, GI, H, HMIN
      DOUBLE PRECISION C2000, FOUR, HMAX0, HMIN0, H0, MACHEP, ONE, P002,
     1                 THREE, TWO, ZERO
C
      PARAMETER (C2000=2.0D+3, FOUR=4.0D+0, HMAX0=0.02D+0, HMIN0=5.0D+1,
     1     ONE=1.0D+0, P002=0.002D+0, THREE=3.0D+0,
     2     TWO=2.0D+0, ZERO=0.0D+0)
      PARAMETER (FH=3, FX0=4, HSAVE=5, XISAVE=6)
C
C---------------------------------  BODY  ------------------------------
C
      IF (IRC .LT. 0) GO TO 140
      IF (IRC .GT. 0) GO TO 210
C
C     ***  FRESH START -- GET MACHINE-DEPENDENT CONSTANTS  ***
C
C     STORE MACHEP IN W(1) AND H0 IN W(2), WHERE MACHEP IS THE UNIT
C     ROUNDOFF (THE SMALLEST POSITIVE NUMBER SUCH THAT
C     1 + MACHEP .GT. 1  AND  1 - MACHEP .LT. 1),  AND  H0 IS THE
C     SQUARE-ROOT OF MACHEP.
C
      W(1) = DR7MDC(3)
      W(2) = DSQRT(W(1))
C
      W(FX0) = FX
C
C     ***  INCREMENT  I  AND START COMPUTING  G(I)  ***
C
 110  I = IABS(IRC) + 1
      IF (I .GT. N) GO TO 300
       IRC = I
       AFX = DABS(W(FX0))
       MACHEP = W(1)
       H0 = W(2)
       HMIN = HMIN0 * MACHEP
       W(XISAVE) = X(I)
       AXI = DABS(X(I))
       AXIBAR = DMAX1(AXI, ONE/D(I))
       GI = G(I)
       AGI = DABS(GI)
       ETA = DABS(ETA0)
       IF (AFX .GT. ZERO) ETA = DMAX1(ETA, AGI*AXI*MACHEP/AFX)
       ALPHAI = ALPHA(I)
       IF (ALPHAI .EQ. ZERO) GO TO 170
       IF (GI .EQ. ZERO .OR. FX .EQ. ZERO) GO TO 180
       AFXETA = AFX*ETA
       AAI = DABS(ALPHAI)
C
C        *** COMPUTE H = STEWART*S FORWARD-DIFFERENCE STEP SIZE.
C
       IF (GI**2 .LE. AFXETA*AAI) GO TO 120
            H = TWO*DSQRT(AFXETA/AAI)
            H = H*(ONE - AAI*H/(THREE*AAI*H + FOUR*AGI))
            GO TO 130
C120     H = TWO*(AFXETA*AGI/(AAI**2))**(ONE/THREE)
 120     H = TWO * (AFXETA*AGI)**(ONE/THREE) * AAI**(-TWO/THREE)
       H = H*(ONE - TWO*AGI/(THREE*AAI*H + FOUR*AGI))
C
C        ***  ENSURE THAT  H  IS NOT INSIGNIFICANTLY SMALL  ***
C
 130     H = DMAX1(H, HMIN*AXIBAR)
C
C        *** USE FORWARD DIFFERENCE IF BOUND ON TRUNCATION ERROR IS AT
C        *** MOST 10**-3.
C
       IF (AAI*H .LE. P002*AGI) GO TO 160
C
C        *** COMPUTE H = STEWART*S STEP FOR CENTRAL DIFFERENCE.
C
       DISCON = C2000*AFXETA
       H = DISCON/(AGI + DSQRT(GI**2 + AAI*DISCON))
C
C        ***  ENSURE THAT  H  IS NEITHER TOO SMALL NOR TOO BIG  ***
C
       H = DMAX1(H, HMIN*AXIBAR)
       IF (H .GE. HMAX0*AXIBAR) H = AXIBAR * H0**(TWO/THREE)
C
C        ***  COMPUTE CENTRAL DIFFERENCE  ***
C
       IRC = -I
       GO TO 200
C
 140     H = -W(HSAVE)
       I = IABS(IRC)
       IF (H .GT. ZERO) GO TO 150
       W(FH) = FX
       GO TO 200
C
 150     G(I) = (W(FH) - FX) / (TWO * H)
       X(I) = W(XISAVE)
       GO TO 110
C
C     ***  COMPUTE FORWARD DIFFERENCES IN VARIOUS CASES  ***
C
 160     IF (H .GE. HMAX0*AXIBAR) H = H0 * AXIBAR
       IF (ALPHAI*GI .LT. ZERO) H = -H
       GO TO 200
 170     H = AXIBAR
       GO TO 200
 180     H = H0 * AXIBAR
C
 200     X(I) = W(XISAVE) + H
       W(HSAVE) = H
       GO TO 999
C
C     ***  COMPUTE ACTUAL FORWARD DIFFERENCE  ***
C
 210     G(IRC) = (FX - W(FX0)) / W(HSAVE)
       X(IRC) = W(XISAVE)
       GO TO 110
C
C  ***  RESTORE FX AND INDICATE THAT G HAS BEEN COMPUTED  ***
C
 300  FX = W(FX0)
      IRC = 0
C
 999  RETURN
C  ***  LAST CARD OF DS7GRD FOLLOWS  ***
      END
      SUBROUTINE DG7QTS(D, DIG, DIHDI, KA, L, P, STEP, V, W)
C
C  *** COMPUTE GOLDFELD-QUANDT-TROTTER STEP BY MORE-HEBDEN TECHNIQUE ***
C  ***  (NL2SOL VERSION 2.2), MODIFIED A LA MORE AND SORENSEN  ***
C
C  ***  PARAMETER DECLARATIONS  ***
C
      INTEGER KA, P
      DOUBLE PRECISION D(P), DIG(P), DIHDI(1), L(1), V(21), STEP(P),
     1                 W(1)
C     DIMENSION DIHDI(P*(P+1)/2), L(P*(P+1)/2), W(4*P+7)
C
C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
C
C  ***  PURPOSE  ***
C
C        GIVEN THE (COMPACTLY STORED) LOWER TRIANGLE OF A SCALED
C     HESSIAN (APPROXIMATION) AND A NONZERO SCALED GRADIENT VECTOR,
C     THIS SUBROUTINE COMPUTES A GOLDFELD-QUANDT-TROTTER STEP OF
C     APPROXIMATE LENGTH V(RADIUS) BY THE MORE-HEBDEN TECHNIQUE.  IN
C     OTHER WORDS, STEP IS COMPUTED TO (APPROXIMATELY) MINIMIZE
C     PSI(STEP) = (G**T)*STEP + 0.5*(STEP**T)*H*STEP  SUCH THAT THE
C     2-NORM OF D*STEP IS AT MOST (APPROXIMATELY) V(RADIUS), WHERE
C     G  IS THE GRADIENT,  H  IS THE HESSIAN, AND  D  IS A DIAGONAL
C     SCALE MATRIX WHOSE DIAGONAL IS STORED IN THE PARAMETER D.
C     (DG7QTS ASSUMES  DIG = D**-1 * G  AND  DIHDI = D**-1 * H * D**-1.)
C
C  ***  PARAMETER DESCRIPTION  ***
C
C     D (IN)  = THE SCALE VECTOR, I.E. THE DIAGONAL OF THE SCALE
C              MATRIX  D  MENTIONED ABOVE UNDER PURPOSE.
C   DIG (IN)  = THE SCALED GRADIENT VECTOR, D**-1 * G.  IF G = 0, THEN
C              STEP = 0  AND  V(STPPAR) = 0  ARE RETURNED.
C DIHDI (IN)  = LOWER TRIANGLE OF THE SCALED HESSIAN (APPROXIMATION),
C              I.E., D**-1 * H * D**-1, STORED COMPACTLY BY ROWS., I.E.,
C              IN THE ORDER (1,1), (2,1), (2,2), (3,1), (3,2), ETC.
C    KA (I/O) = THE NUMBER OF HEBDEN ITERATIONS (SO FAR) TAKEN TO DETER-
C              MINE STEP.  KA .LT. 0 ON INPUT MEANS THIS IS THE FIRST
C              ATTEMPT TO DETERMINE STEP (FOR THE PRESENT DIG AND DIHDI)
C              -- KA IS INITIALIZED TO 0 IN THIS CASE.  OUTPUT WITH
C              KA = 0  (OR V(STPPAR) = 0)  MEANS  STEP = -(H**-1)*G.
C     L (I/O) = WORKSPACE OF LENGTH P*(P+1)/2 FOR CHOLESKY FACTORS.
C     P (IN)  = NUMBER OF PARAMETERS -- THE HESSIAN IS A  P X P  MATRIX.
C  STEP (I/O) = THE STEP COMPUTED.
C     V (I/O) CONTAINS VARIOUS CONSTANTS AND VARIABLES DESCRIBED BELOW.
C     W (I/O) = WORKSPACE OF LENGTH 4*P + 6.
C
C  ***  ENTRIES IN V  ***
C
C V(DGNORM) (I/O) = 2-NORM OF (D**-1)*G.
C V(DSTNRM) (OUTPUT) = 2-NORM OF D*STEP.
C V(DST0)   (I/O) = 2-NORM OF D*(H**-1)*G (FOR POS. DEF. H ONLY), OR
C             OVERESTIMATE OF SMALLEST EIGENVALUE OF (D**-1)*H*(D**-1).
C V(EPSLON) (IN)  = MAX. REL. ERROR ALLOWED FOR PSI(STEP).  FOR THE
C             STEP RETURNED, PSI(STEP) WILL EXCEED ITS OPTIMAL VALUE
C             BY LESS THAN -V(EPSLON)*PSI(STEP).  SUGGESTED VALUE = 0.1.
C V(GTSTEP) (OUT) = INNER PRODUCT BETWEEN G AND STEP.
C V(NREDUC) (OUT) = PSI(-(H**-1)*G) = PSI(NEWTON STEP)  (FOR POS. DEF.
C             H ONLY -- V(NREDUC) IS SET TO ZERO OTHERWISE).
C V(PHMNFC) (IN)  = TOL. (TOGETHER WITH V(PHMXFC)) FOR ACCEPTING STEP
C             (MORE*S SIGMA).  THE ERROR V(DSTNRM) - V(RADIUS) MUST LIE
C             BETWEEN V(PHMNFC)*V(RADIUS) AND V(PHMXFC)*V(RADIUS).
C V(PHMXFC) (IN)  (SEE V(PHMNFC).)
C             SUGGESTED VALUES -- V(PHMNFC) = -0.25, V(PHMXFC) = 0.5.
C V(PREDUC) (OUT) = PSI(STEP) = PREDICTED OBJ. FUNC. REDUCTION FOR STEP.
C V(RADIUS) (IN)  = RADIUS OF CURRENT (SCALED) TRUST REGION.
C V(RAD0)   (I/O) = VALUE OF V(RADIUS) FROM PREVIOUS CALL.
C V(STPPAR) (I/O) IS NORMALLY THE MARQUARDT PARAMETER, I.E. THE ALPHA
C             DESCRIBED BELOW UNDER ALGORITHM NOTES.  IF H + ALPHA*D**2
C             (SEE ALGORITHM NOTES) IS (NEARLY) SINGULAR, HOWEVER,
C             THEN V(STPPAR) = -ALPHA.
C
C  ***  USAGE NOTES  ***
C
C     IF IT IS DESIRED TO RECOMPUTE STEP USING A DIFFERENT VALUE OF
C     V(RADIUS), THEN THIS ROUTINE MAY BE RESTARTED BY CALLING IT
C     WITH ALL PARAMETERS UNCHANGED EXCEPT V(RADIUS).  (THIS EXPLAINS
C     WHY STEP AND W ARE LISTED AS I/O).  ON AN INITIAL CALL (ONE WITH
C     KA .LT. 0), STEP AND W NEED NOT BE INITIALIZED AND ONLY COMPO-
C     NENTS V(EPSLON), V(STPPAR), V(PHMNFC), V(PHMXFC), V(RADIUS), AND
C     V(RAD0) OF V MUST BE INITIALIZED.
C
C  ***  ALGORITHM NOTES  ***
C
C        THE DESIRED G-Q-T STEP (REF. 2, 3, 4, 6) SATISFIES
C     (H + ALPHA*D**2)*STEP = -G  FOR SOME NONNEGATIVE ALPHA SUCH THAT
C     H + ALPHA*D**2 IS POSITIVE SEMIDEFINITE.  ALPHA AND STEP ARE
C     COMPUTED BY A SCHEME ANALOGOUS TO THE ONE DESCRIBED IN REF. 5.
C     ESTIMATES OF THE SMALLEST AND LARGEST EIGENVALUES OF THE HESSIAN
C     ARE OBTAINED FROM THE GERSCHGORIN CIRCLE THEOREM ENHANCED BY A
C     SIMPLE FORM OF THE SCALING DESCRIBED IN REF. 7.  CASES IN WHICH
C     H + ALPHA*D**2 IS NEARLY (OR EXACTLY) SINGULAR ARE HANDLED BY
C     THE TECHNIQUE DISCUSSED IN REF. 2.  IN THESE CASES, A STEP OF
C     (EXACT) LENGTH V(RADIUS) IS RETURNED FOR WHICH PSI(STEP) EXCEEDS
C     ITS OPTIMAL VALUE BY LESS THAN -V(EPSLON)*PSI(STEP).  THE TEST
C     SUGGESTED IN REF. 6 FOR DETECTING THE SPECIAL CASE IS PERFORMED
C     ONCE TWO MATRIX FACTORIZATIONS HAVE BEEN DONE -- DOING SO SOONER
C     SEEMS TO DEGRADE THE PERFORMANCE OF OPTIMIZATION ROUTINES THAT
C     CALL THIS ROUTINE.
C
C  ***  FUNCTIONS AND SUBROUTINES CALLED  ***
C
C DD7TPR - RETURNS INNER PRODUCT OF TWO VECTORS.
C DL7ITV - APPLIES INVERSE-TRANSPOSE OF COMPACT LOWER TRIANG. MATRIX.
C DL7IVM - APPLIES INVERSE OF COMPACT LOWER TRIANG. MATRIX.
C DL7SRT  - FINDS CHOLESKY FACTOR (OF COMPACTLY STORED LOWER TRIANG.).
C DL7SVN - RETURNS APPROX. TO MIN. SING. VALUE OF LOWER TRIANG. MATRIX.
C DR7MDC - RETURNS MACHINE-DEPENDENT CONSTANTS.
C DV2NRM - RETURNS 2-NORM OF A VECTOR.
C
C  ***  REFERENCES  ***
C
C 1.  DENNIS, J.E., GAY, D.M., AND WELSCH, R.E. (1981), AN ADAPTIVE
C             NONLINEAR LEAST-SQUARES ALGORITHM, ACM TRANS. MATH.
C             SOFTWARE, VOL. 7, NO. 3.
C 2.  GAY, D.M. (1981), COMPUTING OPTIMAL LOCALLY CONSTRAINED STEPS,
C             SIAM J. SCI. STATIST. COMPUTING, VOL. 2, NO. 2, PP.
C             186-197.
C 3.  GOLDFELD, S.M., QUANDT, R.E., AND TROTTER, H.F. (1966),
C             MAXIMIZATION BY QUADRATIC HILL-CLIMBING, ECONOMETRICA 34,
C             PP. 541-551.
C 4.  HEBDEN, M.D. (1973), AN ALGORITHM FOR MINIMIZATION USING EXACT
C             SECOND DERIVATIVES, REPORT T.P. 515, THEORETICAL PHYSICS
C             DIV., A.E.R.E. HARWELL, OXON., ENGLAND.
C 5.  MORE, J.J. (1978), THE LEVENBERG-MARQUARDT ALGORITHM, IMPLEMEN-
C             TATION AND THEORY, PP.105-116 OF SPRINGER LECTURE NOTES
C             IN MATHEMATICS NO. 630, EDITED BY G.A. WATSON, SPRINGER-
C             VERLAG, BERLIN AND NEW YORK.
C 6.  MORE, J.J., AND SORENSEN, D.C. (1981), COMPUTING A TRUST REGION
C             STEP, TECHNICAL REPORT ANL-81-83, ARGONNE NATIONAL LAB.
C 7.  VARGA, R.S. (1965), MINIMAL GERSCHGORIN SETS, PACIFIC J. MATH. 15,
C             PP. 719-729.
C
C  ***  GENERAL  ***
C
C     CODED BY DAVID M. GAY.
C     THIS SUBROUTINE WAS WRITTEN IN CONNECTION WITH RESEARCH
C     SUPPORTED BY THE NATIONAL SCIENCE FOUNDATION UNDER GRANTS
C     MCS-7600324, DCR75-10143, 76-14311DSS, MCS76-11989, AND
C     MCS-7906671.
C
C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
C
C  ***  LOCAL VARIABLES  ***
C
      LOGICAL RESTRT
      INTEGER DGGDMX, DIAG, DIAG0, DSTSAV, EMAX, EMIN, I, IM1, INC, IRC,
     1        J, K, KALIM, KAMIN, K1, LK0, PHIPIN, Q, Q0, UK0, X
      DOUBLE PRECISION ALPHAK, AKI, AKK, DELTA, DST, EPS, GTSTA, LK,
     1                 OLDPHI, PHI, PHIMAX, PHIMIN, PSIFAC, RAD, RADSQ,
     2                 ROOT, SI, SK, SW, T, TWOPSI, T1, T2, UK, WI
C
C     ***  CONSTANTS  ***
      DOUBLE PRECISION BIG, DGXFAC, EPSFAC, FOUR, HALF, KAPPA, NEGONE,
     1                 ONE, P001, SIX, THREE, TWO, ZERO
C
C  ***  INTRINSIC FUNCTIONS  ***
C/+
      DOUBLE PRECISION DSQRT
C/
C  ***  EXTERNAL FUNCTIONS AND SUBROUTINES  ***
C
      DOUBLE PRECISION DD7TPR, DL7SVN, DR7MDC, DV2NRM
      EXTERNAL DD7TPR, DL7ITV, DL7IVM,DL7SRT, DL7SVN, DR7MDC, DV2NRM
C
C  ***  SUBSCRIPTS FOR V  ***
C
      INTEGER DGNORM, DSTNRM, DST0, EPSLON, GTSTEP, STPPAR, NREDUC,
     1        PHMNFC, PHMXFC, PREDUC, RADIUS, RAD0
      PARAMETER (DGNORM=1, DSTNRM=2, DST0=3, EPSLON=19, GTSTEP=4,
     1           NREDUC=6, PHMNFC=20, PHMXFC=21, PREDUC=7, RADIUS=8,
     2           RAD0=9, STPPAR=5)
C
      PARAMETER (EPSFAC=50.0D+0, FOUR=4.0D+0, HALF=0.5D+0,
     1     KAPPA=2.0D+0, NEGONE=-1.0D+0, ONE=1.0D+0, P001=1.0D-3,
     2     SIX=6.0D+0, THREE=3.0D+0, TWO=2.0D+0, ZERO=0.0D+0)
      SAVE DGXFAC
      DATA BIG/0.D+0/, DGXFAC/0.D+0/
C
C  ***  BODY  ***
C
      IF (BIG .LE. ZERO) BIG = DR7MDC(6)
C
C     ***  STORE LARGEST ABS. ENTRY IN (D**-1)*H*(D**-1) AT W(DGGDMX).
      DGGDMX = P + 1
C     ***  STORE GERSCHGORIN OVER- AND UNDERESTIMATES OF THE LARGEST
C     ***  AND SMALLEST EIGENVALUES OF (D**-1)*H*(D**-1) AT W(EMAX)
C     ***  AND W(EMIN) RESPECTIVELY.
      EMAX = DGGDMX + 1
      EMIN = EMAX + 1
C     ***  FOR USE IN RECOMPUTING STEP, THE FINAL VALUES OF LK, UK, DST,
C     ***  AND THE INVERSE DERIVATIVE OF MORE*S PHI AT 0 (FOR POS. DEF.
C     ***  H) ARE STORED IN W(LK0), W(UK0), W(DSTSAV), AND W(PHIPIN)
C     ***  RESPECTIVELY.
      LK0 = EMIN + 1
      PHIPIN = LK0 + 1
      UK0 = PHIPIN + 1
      DSTSAV = UK0 + 1
C     ***  STORE DIAG OF (D**-1)*H*(D**-1) IN W(DIAG),...,W(DIAG0+P).
      DIAG0 = DSTSAV
      DIAG = DIAG0 + 1
C     ***  STORE -D*STEP IN W(Q),...,W(Q0+P).
      Q0 = DIAG0 + P
      Q = Q0 + 1
C     ***  ALLOCATE STORAGE FOR SCRATCH VECTOR X  ***
      X = Q + P
      RAD = V(RADIUS)
      RADSQ = RAD**2
C     ***  PHITOL = MAX. ERROR ALLOWED IN DST = V(DSTNRM) = 2-NORM OF
C     ***  D*STEP.
      PHIMAX = V(PHMXFC) * RAD
      PHIMIN = V(PHMNFC) * RAD
      PSIFAC = BIG
      T1 = TWO * V(EPSLON) / (THREE * (FOUR * (V(PHMNFC) + ONE) *
     1                       (KAPPA + ONE)  +  KAPPA  +  TWO) * RAD)
      IF (T1 .LT. BIG*DMIN1(RAD,ONE)) PSIFAC = T1 / RAD
C     ***  OLDPHI IS USED TO DETECT LIMITS OF NUMERICAL ACCURACY.  IF
C     ***  WE RECOMPUTE STEP AND IT DOES NOT CHANGE, THEN WE ACCEPT IT.
      OLDPHI = ZERO
      EPS = V(EPSLON)
      IRC = 0
      RESTRT = .FALSE.
      KALIM = KA + 50
C
C  ***  START OR RESTART, DEPENDING ON KA  ***
C
      IF (KA .GE. 0) GO TO 290
C
C  ***  FRESH START  ***
C
      K = 0
      UK = NEGONE
      KA = 0
      KALIM = 50
      V(DGNORM) = DV2NRM(P, DIG)
      V(NREDUC) = ZERO
      V(DST0) = ZERO
      KAMIN = 3
      IF (V(DGNORM) .EQ. ZERO) KAMIN = 0
C
C     ***  STORE DIAG(DIHDI) IN W(DIAG0+1),...,W(DIAG0+P)  ***
C
      J = 0
      DO 10 I = 1, P
       J = J + I
       K1 = DIAG0 + I
       W(K1) = DIHDI(J)
 10      CONTINUE
C
C     ***  DETERMINE W(DGGDMX), THE LARGEST ELEMENT OF DIHDI  ***
C
      T1 = ZERO
      J = P * (P + 1) / 2
      DO 20 I = 1, J
       T = DABS(DIHDI(I))
       IF (T1 .LT. T) T1 = T
 20      CONTINUE
      W(DGGDMX) = T1
C
C  ***  TRY ALPHA = 0  ***
C
 30   CALL DL7SRT(1, P, L, DIHDI, IRC)
      IF (IRC .EQ. 0) GO TO 50
C        ***  INDEF. H -- UNDERESTIMATE SMALLEST EIGENVALUE, USE THIS
C        ***  ESTIMATE TO INITIALIZE LOWER BOUND LK ON ALPHA.
       J = IRC*(IRC+1)/2
       T = L(J)
       L(J) = ONE
       DO 40 I = 1, IRC
 40           W(I) = ZERO
       W(IRC) = ONE
       CALL DL7ITV(IRC, W, L, W)
       T1 = DV2NRM(IRC, W)
       LK = -T / T1 / T1
       V(DST0) = -LK
       IF (RESTRT) GO TO 210
       GO TO 70
C
C     ***  POSITIVE DEFINITE H -- COMPUTE UNMODIFIED NEWTON STEP.  ***
 50   LK = ZERO
      T = DL7SVN(P, L, W(Q), W(Q))
      IF (T .GE. ONE) GO TO 60
       IF (V(DGNORM) .GE. T*T*BIG) GO TO 70
 60   CALL DL7IVM(P, W(Q), L, DIG)
      GTSTA = DD7TPR(P, W(Q), W(Q))
      V(NREDUC) = HALF * GTSTA
      CALL DL7ITV(P, W(Q), L, W(Q))
      DST = DV2NRM(P, W(Q))
      V(DST0) = DST
      PHI = DST - RAD
      IF (PHI .LE. PHIMAX) GO TO 260
      IF (RESTRT) GO TO 210
C
C  ***  PREPARE TO COMPUTE GERSCHGORIN ESTIMATES OF LARGEST (AND
C  ***  SMALLEST) EIGENVALUES.  ***
C
 70   K = 0
      DO 100 I = 1, P
       WI = ZERO
       IF (I .EQ. 1) GO TO 90
       IM1 = I - 1
       DO 80 J = 1, IM1
            K = K + 1
            T = DABS(DIHDI(K))
            WI = WI + T
            W(J) = W(J) + T
 80           CONTINUE
 90      W(I) = WI
       K = K + 1
 100     CONTINUE
C
C  ***  (UNDER-)ESTIMATE SMALLEST EIGENVALUE OF (D**-1)*H*(D**-1)  ***
C
      K = 1
      T1 = W(DIAG) - W(1)
      IF (P .LE. 1) GO TO 120
      DO 110 I = 2, P
       J = DIAG0 + I
       T = W(J) - W(I)
       IF (T .GE. T1) GO TO 110
            T1 = T
            K = I
 110     CONTINUE
C
 120  SK = W(K)
      J = DIAG0 + K
      AKK = W(J)
      K1 = K*(K-1)/2 + 1
      INC = 1
      T = ZERO
      DO 150 I = 1, P
       IF (I .EQ. K) GO TO 130
       AKI = DABS(DIHDI(K1))
       SI = W(I)
       J = DIAG0 + I
       T1 = HALF * (AKK - W(J) + SI - AKI)
       T1 = T1 + DSQRT(T1*T1 + SK*AKI)
       IF (T .LT. T1) T = T1
       IF (I .LT. K) GO TO 140
 130     INC = I
 140     K1 = K1 + INC
 150     CONTINUE
C
      W(EMIN) = AKK - T
      UK = V(DGNORM)/RAD - W(EMIN)
      IF (V(DGNORM) .EQ. ZERO) UK = UK + P001 + P001*UK
      IF (UK .LE. ZERO) UK = P001
C
C  ***  COMPUTE GERSCHGORIN (OVER-)ESTIMATE OF LARGEST EIGENVALUE  ***
C
      K = 1
      T1 = W(DIAG) + W(1)
      IF (P .LE. 1) GO TO 170
      DO 160 I = 2, P
       J = DIAG0 + I
       T = W(J) + W(I)
       IF (T .LE. T1) GO TO 160
            T1 = T
            K = I
 160     CONTINUE
C
 170  SK = W(K)
      J = DIAG0 + K
      AKK = W(J)
      K1 = K*(K-1)/2 + 1
      INC = 1
      T = ZERO
      DO 200 I = 1, P
       IF (I .EQ. K) GO TO 180
       AKI = DABS(DIHDI(K1))
       SI = W(I)
       J = DIAG0 + I
       T1 = HALF * (W(J) + SI - AKI - AKK)
       T1 = T1 + DSQRT(T1*T1 + SK*AKI)
       IF (T .LT. T1) T = T1
       IF (I .LT. K) GO TO 190
 180     INC = I
 190     K1 = K1 + INC
 200     CONTINUE
C
      W(EMAX) = AKK + T
      LK = DMAX1(LK, V(DGNORM)/RAD - W(EMAX))
C
C     ***  ALPHAK = CURRENT VALUE OF ALPHA (SEE ALG. NOTES ABOVE).  WE
C     ***  USE MORE*S SCHEME FOR INITIALIZING IT.
      ALPHAK = DABS(V(STPPAR)) * V(RAD0)/RAD
      ALPHAK = DMIN1(UK, DMAX1(ALPHAK, LK))
C
      IF (IRC .NE. 0) GO TO 210
C
C  ***  COMPUTE L0 FOR POSITIVE DEFINITE H  ***
C
      CALL DL7IVM(P, W, L, W(Q))
      T = DV2NRM(P, W)
      W(PHIPIN) = RAD / T / T
      LK = DMAX1(LK, PHI*W(PHIPIN))
C
C  ***  SAFEGUARD ALPHAK AND ADD ALPHAK*I TO (D**-1)*H*(D**-1)  ***
C
 210  KA = KA + 1
      IF (-V(DST0) .GE. ALPHAK .OR. ALPHAK .LT. LK .OR. ALPHAK .GE. UK)
     1                      ALPHAK = UK * DMAX1(P001, DSQRT(LK/UK))
      IF (ALPHAK .LE. ZERO) ALPHAK = HALF * UK
      IF (ALPHAK .LE. ZERO) ALPHAK = UK
      K = 0
      DO 220 I = 1, P
       K = K + I
       J = DIAG0 + I
       DIHDI(K) = W(J) + ALPHAK
 220     CONTINUE
C
C  ***  TRY COMPUTING CHOLESKY DECOMPOSITION  ***
C
      CALL DL7SRT(1, P, L, DIHDI, IRC)
      IF (IRC .EQ. 0) GO TO 240
C
C  ***  (D**-1)*H*(D**-1) + ALPHAK*I  IS INDEFINITE -- OVERESTIMATE
C  ***  SMALLEST EIGENVALUE FOR USE IN UPDATING LK  ***
C
      J = (IRC*(IRC+1))/2
      T = L(J)
      L(J) = ONE
      DO 230 I = 1, IRC
 230     W(I) = ZERO
      W(IRC) = ONE
      CALL DL7ITV(IRC, W, L, W)
      T1 = DV2NRM(IRC, W)
      LK = ALPHAK - T/T1/T1
      V(DST0) = -LK
      IF (UK .LT. LK) UK = LK
      IF (ALPHAK .LT. LK) GO TO 210
C
C  ***  NASTY CASE -- EXACT GERSCHGORIN BOUNDS.  FUDGE LK, UK...
C
      T = P001 * ALPHAK
      IF (T .LE. ZERO) T = P001
      LK = ALPHAK + T
      IF (UK .LE. LK) UK = LK + T
      GO TO 210
C
C  ***  ALPHAK MAKES (D**-1)*H*(D**-1) POSITIVE DEFINITE.
C  ***  COMPUTE Q = -D*STEP, CHECK FOR CONVERGENCE.  ***
C
 240  CALL DL7IVM(P, W(Q), L, DIG)
      GTSTA = DD7TPR(P, W(Q), W(Q))
      CALL DL7ITV(P, W(Q), L, W(Q))
      DST = DV2NRM(P, W(Q))
      PHI = DST - RAD
      IF (PHI .LE. PHIMAX .AND. PHI .GE. PHIMIN) GO TO 270
      IF (PHI .EQ. OLDPHI) GO TO 270
      OLDPHI = PHI
      IF (PHI .LT. ZERO) GO TO 330
C
C  ***  UNACCEPTABLE ALPHAK -- UPDATE LK, UK, ALPHAK  ***
C
 250  IF (KA .GE. KALIM) GO TO 270
C     ***  THE FOLLOWING DMIN1 IS NECESSARY BECAUSE OF RESTARTS  ***
      IF (PHI .LT. ZERO) UK = DMIN1(UK, ALPHAK)
C     *** KAMIN = 0 ONLY IFF THE GRADIENT VANISHES  ***
      IF (KAMIN .EQ. 0) GO TO 210
      CALL DL7IVM(P, W, L, W(Q))
C     *** THE FOLLOWING, COMMENTED CALCULATION OF ALPHAK IS SOMETIMES
C     *** SAFER BUT WORSE IN PERFORMANCE...
C     T1 = DST / DV2NRM(P, W)
C     ALPHAK = ALPHAK  +  T1 * (PHI/RAD) * T1
      T1 = DV2NRM(P, W)
      ALPHAK = ALPHAK  +  (PHI/T1) * (DST/T1) * (DST/RAD)
      LK = DMAX1(LK, ALPHAK)
      ALPHAK = LK
      GO TO 210
C
C  ***  ACCEPTABLE STEP ON FIRST TRY  ***
C
 260  ALPHAK = ZERO
C
C  ***  SUCCESSFUL STEP IN GENERAL.  COMPUTE STEP = -(D**-1)*Q  ***
C
 270  DO 280 I = 1, P
       J = Q0 + I
       STEP(I) = -W(J)/D(I)
 280     CONTINUE
      V(GTSTEP) = -GTSTA
      V(PREDUC) = HALF * (DABS(ALPHAK)*DST*DST + GTSTA)
      GO TO 410
C
C
C  ***  RESTART WITH NEW RADIUS  ***
C
 290  IF (V(DST0) .LE. ZERO .OR. V(DST0) - RAD .GT. PHIMAX) GO TO 310
C
C     ***  PREPARE TO RETURN NEWTON STEP  ***
C
       RESTRT = .TRUE.
       KA = KA + 1
       K = 0
       DO 300 I = 1, P
            K = K + I
            J = DIAG0 + I
            DIHDI(K) = W(J)
 300          CONTINUE
       UK = NEGONE
       GO TO 30
C
 310  KAMIN = KA + 3
      IF (V(DGNORM) .EQ. ZERO) KAMIN = 0
      IF (KA .EQ. 0) GO TO 50
C
      DST = W(DSTSAV)
      ALPHAK = DABS(V(STPPAR))
      PHI = DST - RAD
      T = V(DGNORM)/RAD
      UK = T - W(EMIN)
      IF (V(DGNORM) .EQ. ZERO) UK = UK + P001 + P001*UK
      IF (UK .LE. ZERO) UK = P001
      IF (RAD .GT. V(RAD0)) GO TO 320
C
C        ***  SMALLER RADIUS  ***
       LK = ZERO
       IF (ALPHAK .GT. ZERO) LK = W(LK0)
       LK = DMAX1(LK, T - W(EMAX))
       IF (V(DST0) .GT. ZERO) LK = DMAX1(LK, (V(DST0)-RAD)*W(PHIPIN))
       GO TO 250
C
C     ***  BIGGER RADIUS  ***
 320  IF (ALPHAK .GT. ZERO) UK = DMIN1(UK, W(UK0))
      LK = DMAX1(ZERO, -V(DST0), T - W(EMAX))
      IF (V(DST0) .GT. ZERO) LK = DMAX1(LK, (V(DST0)-RAD)*W(PHIPIN))
      GO TO 250
C
C  ***  DECIDE WHETHER TO CHECK FOR SPECIAL CASE... IN PRACTICE (FROM
C  ***  THE STANDPOINT OF THE CALLING OPTIMIZATION CODE) IT SEEMS BEST
C  ***  NOT TO CHECK UNTIL A FEW ITERATIONS HAVE FAILED -- HENCE THE
C  ***  TEST ON KAMIN BELOW.
C
 330  DELTA = ALPHAK + DMIN1(ZERO, V(DST0))
      TWOPSI = ALPHAK*DST*DST + GTSTA
      IF (KA .GE. KAMIN) GO TO 340
C     *** IF THE TEST IN REF. 2 IS SATISFIED, FALL THROUGH TO HANDLE
C     *** THE SPECIAL CASE (AS SOON AS THE MORE-SORENSEN TEST DETECTS
C     *** IT).
      IF (PSIFAC .GE. BIG) GO TO 340
      IF (DELTA .GE. PSIFAC*TWOPSI) GO TO 370
C
C  ***  CHECK FOR THE SPECIAL CASE OF  H + ALPHA*D**2  (NEARLY)
C  ***  SINGULAR.  USE ONE STEP OF INVERSE POWER METHOD WITH START
C  ***  FROM DL7SVN TO OBTAIN APPROXIMATE EIGENVECTOR CORRESPONDING
C  ***  TO SMALLEST EIGENVALUE OF (D**-1)*H*(D**-1).  DL7SVN RETURNS
C  ***  X AND W WITH  L*W = X.
C
 340  T = DL7SVN(P, L, W(X), W)
C
C     ***  NORMALIZE W  ***
      DO 350 I = 1, P
 350     W(I) = T*W(I)
C     ***  COMPLETE CURRENT INV. POWER ITER. -- REPLACE W BY (L**-T)*W.
      CALL DL7ITV(P, W, L, W)
      T2 = ONE/DV2NRM(P, W)
      DO 360 I = 1, P
 360     W(I) = T2*W(I)
      T = T2 * T
C
C  ***  NOW W IS THE DESIRED APPROXIMATE (UNIT) EIGENVECTOR AND
C  ***  T*X = ((D**-1)*H*(D**-1) + ALPHAK*I)*W.
C
      SW = DD7TPR(P, W(Q), W)
      T1 = (RAD + DST) * (RAD - DST)
      ROOT = DSQRT(SW*SW + T1)
      IF (SW .LT. ZERO) ROOT = -ROOT
      SI = T1 / (SW + ROOT)
C
C  ***  THE ACTUAL TEST FOR THE SPECIAL CASE...
C
      IF ((T2*SI)**2 .LE. EPS*(DST**2 + ALPHAK*RADSQ)) GO TO 380
C
C  ***  UPDATE UPPER BOUND ON SMALLEST EIGENVALUE (WHEN NOT POSITIVE)
C  ***  (AS RECOMMENDED BY MORE AND SORENSEN) AND CONTINUE...
C
      IF (V(DST0) .LE. ZERO) V(DST0) = DMIN1(V(DST0), T2**2 - ALPHAK)
      LK = DMAX1(LK, -V(DST0))
C
C  ***  CHECK WHETHER WE CAN HOPE TO DETECT THE SPECIAL CASE IN
C  ***  THE AVAILABLE ARITHMETIC.  ACCEPT STEP AS IT IS IF NOT.
C
C     ***  IF NOT YET AVAILABLE, OBTAIN MACHINE DEPENDENT VALUE DGXFAC.
 370  IF (DGXFAC .EQ. ZERO) DGXFAC = EPSFAC * DR7MDC(3)
C
      IF (DELTA .GT. DGXFAC*W(DGGDMX)) GO TO 250
       GO TO 270
C
C  ***  SPECIAL CASE DETECTED... NEGATE ALPHAK TO INDICATE SPECIAL CASE
C
 380  ALPHAK = -ALPHAK
      V(PREDUC) = HALF * TWOPSI
C
C  ***  ACCEPT CURRENT STEP IF ADDING SI*W WOULD LEAD TO A
C  ***  FURTHER RELATIVE REDUCTION IN PSI OF LESS THAN V(EPSLON)/3.
C
      T1 = ZERO
      T = SI*(ALPHAK*SW - HALF*SI*(ALPHAK + T*DD7TPR(P,W(X),W)))
      IF (T .LT. EPS*TWOPSI/SIX) GO TO 390
       V(PREDUC) = V(PREDUC) + T
       DST = RAD
       T1 = -SI
 390  DO 400 I = 1, P
       J = Q0 + I
       W(J) = T1*W(I) - W(J)
       STEP(I) = W(J) / D(I)
 400     CONTINUE
      V(GTSTEP) = DD7TPR(P, DIG, W(Q))
C
C  ***  SAVE VALUES FOR USE IN A POSSIBLE RESTART  ***
C
 410  V(DSTNRM) = DST
      V(STPPAR) = ALPHAK
      W(LK0) = LK
      W(UK0) = UK
      V(RAD0) = RAD
      W(DSTSAV) = DST
C
C     ***  RESTORE DIAGONAL OF DIHDI  ***
C
      J = 0
      DO 420 I = 1, P
       J = J + I
       K = DIAG0 + I
       DIHDI(J) = W(K)
 420     CONTINUE
C
      RETURN
C
C  ***  LAST CARD OF DG7QTS FOLLOWS  ***
      END
      SUBROUTINE DW7ZBF (L, N, S, W, Y, Z)
C
C  ***  COMPUTE  Y  AND  Z  FOR  DL7UPD  CORRESPONDING TO BFGS UPDATE.
C
      INTEGER N
      DOUBLE PRECISION L(1), S(N), W(N), Y(N), Z(N)
C     DIMENSION L(N*(N+1)/2)
C
C--------------------------  PARAMETER USAGE  --------------------------
C
C L (I/O) CHOLESKY FACTOR OF HESSIAN, A LOWER TRIANG. MATRIX STORED
C             COMPACTLY BY ROWS.
C N (INPUT) ORDER OF  L  AND LENGTH OF  S,  W,  Y,  Z.
C S (INPUT) THE STEP JUST TAKEN.
C W (OUTPUT) RIGHT SINGULAR VECTOR OF RANK 1 CORRECTION TO L.
C Y (INPUT) CHANGE IN GRADIENTS CORRESPONDING TO S.
C Z (OUTPUT) LEFT SINGULAR VECTOR OF RANK 1 CORRECTION TO L.
C
C-------------------------------  NOTES  -------------------------------
C
C  ***  ALGORITHM NOTES  ***
C
C        WHEN  S  IS COMPUTED IN CERTAIN WAYS, E.G. BY  GQTSTP  OR
C     DBLDOG,  IT IS POSSIBLE TO SAVE N**2/2 OPERATIONS SINCE  (L**T)*S
C     OR  L*(L**T)*S IS THEN KNOWN.
C        IF THE BFGS UPDATE TO L*(L**T) WOULD REDUCE ITS DETERMINANT TO
C     LESS THAN EPS TIMES ITS OLD VALUE, THEN THIS ROUTINE IN EFFECT
C     REPLACES  Y  BY  THETA*Y + (1 - THETA)*L*(L**T)*S,  WHERE  THETA
C     (BETWEEN 0 AND 1) IS CHOSEN TO MAKE THE REDUCTION FACTOR = EPS.
C
C  ***  GENERAL  ***
C
C     CODED BY DAVID M. GAY (FALL 1979).
C     THIS SUBROUTINE WAS WRITTEN IN CONNECTION WITH RESEARCH SUPPORTED
C     BY THE NATIONAL SCIENCE FOUNDATION UNDER GRANTS MCS-7600324 AND
C     MCS-7906671.
C
C------------------------  EXTERNAL QUANTITIES  ------------------------
C
C  ***  FUNCTIONS AND SUBROUTINES CALLED  ***
C
      DOUBLE PRECISION DD7TPR
      EXTERNAL DD7TPR, DL7IVM, DL7TVM
C DD7TPR RETURNS INNER PRODUCT OF TWO VECTORS.
C DL7IVM MULTIPLIES L**-1 TIMES A VECTOR.
C DL7TVM MULTIPLIES L**T TIMES A VECTOR.
C
C  ***  INTRINSIC FUNCTIONS  ***
C/+
      DOUBLE PRECISION DSQRT
C/
C--------------------------  LOCAL VARIABLES  --------------------------
C
      INTEGER I
      DOUBLE PRECISION CS, CY, EPS, EPSRT, ONE, SHS, YS, THETA
C
C  ***  DATA INITIALIZATIONS  ***
C
      PARAMETER (EPS=0.1D+0, ONE=1.D+0)
C
C+++++++++++++++++++++++++++++++  BODY  ++++++++++++++++++++++++++++++++
C
      CALL DL7TVM(N, W, L, S)
      SHS = DD7TPR(N, W, W)
      YS = DD7TPR(N, Y, S)
      IF (YS .GE. EPS*SHS) GO TO 10
       THETA = (ONE - EPS) * SHS / (SHS - YS)
       EPSRT = DSQRT(EPS)
       CY = THETA / (SHS * EPSRT)
       CS = (ONE + (THETA-ONE)/EPSRT) / SHS
       GO TO 20
 10   CY = ONE / (DSQRT(YS) * DSQRT(SHS))
      CS = ONE / SHS
 20   CALL DL7IVM(N, Z, L, Y)
      DO 30 I = 1, N
 30      Z(I) = CY * Z(I)  -  CS * W(I)
C
      RETURN
C  ***  LAST CARD OF DW7ZBF FOLLOWS  ***
      END
      SUBROUTINE DC7VFN(IV, L, LH, LIV, LV, N, P, V)
C
C  ***  FINISH COVARIANCE COMPUTATION FOR  DRN2G,  DRNSG  ***
C
      INTEGER LH, LIV, LV, N, P
      INTEGER IV(LIV)
      DOUBLE PRECISION L(LH), V(LV)
C
      EXTERNAL DL7NVR, DL7TSQ, DV7SCL
C
C  ***  LOCAL VARIABLES  ***
C
      INTEGER COV, I
      DOUBLE PRECISION HALF
C
C  ***  SUBSCRIPTS FOR IV AND V  ***
C
      INTEGER CNVCOD, COVMAT, F, FDH, H, MODE, RDREQ, REGD
C
      PARAMETER (CNVCOD=55, COVMAT=26, F=10, FDH=74, H=56, MODE=35,
     1           RDREQ=57, REGD=67)
      DATA HALF/0.5D+0/
C
C  ***  BODY  ***
C
      IV(1) = IV(CNVCOD)
      I = IV(MODE) - P
      IV(MODE) = 0
      IV(CNVCOD) = 0
      IF (IV(FDH) .LE. 0) GO TO 999
      IF ((I-2)**2 .EQ. 1) IV(REGD) = 1
      IF (MOD(IV(RDREQ),2) .NE. 1) GO TO 999
C
C     ***  FINISH COMPUTING COVARIANCE MATRIX = INVERSE OF F.D. HESSIAN.
C
      COV = IABS(IV(H))
      IV(FDH) = 0
C
      IF (IV(COVMAT) .NE. 0) GO TO 999
      IF (I .GE. 2) GO TO 10
       CALL DL7NVR(P, V(COV), L)
       CALL DL7TSQ(P, V(COV), V(COV))
C
 10   CALL DV7SCL(LH, V(COV), V(F)/(HALF * DBLE(MAX0(1,N-P))), V(COV))
      IV(COVMAT) = COV
C
 999  RETURN
C  ***  LAST LINE OF DC7VFN FOLLOWS  ***
      END
      SUBROUTINE DD7MLP(N, X, Y, Z, K)
C
C ***  SET X = DIAG(Y)**K * Z
C ***  FOR X, Z = LOWER TRIANG. MATRICES STORED COMPACTLY BY ROW
C ***  K = 1 OR -1.
C
      INTEGER N, K
      DOUBLE PRECISION X(*), Y(N), Z(*)
      INTEGER I, J, L
      DOUBLE PRECISION ONE, T
      DATA ONE/1.D+0/
C
      L = 1
      IF (K .GE. 0) GO TO 30
      DO 20 I = 1, N
       T = ONE / Y(I)
       DO 10 J = 1, I
          X(L) = T * Z(L)
          L = L + 1
 10         CONTINUE
 20      CONTINUE
      GO TO 999
C
 30   DO 50 I = 1, N
       T = Y(I)
       DO 40 J = 1, I
          X(L) = T * Z(L)
          L = L + 1
 40         CONTINUE
 50      CONTINUE
 999  RETURN
C  ***  LAST CARD OF DD7MLP FOLLOWS  ***
      END
      SUBROUTINE DL7IVM(N, X, L, Y)
C
C  ***  SOLVE  L*X = Y, WHERE  L  IS AN  N X N  LOWER TRIANGULAR
C  ***  MATRIX STORED COMPACTLY BY ROWS.  X AND Y MAY OCCUPY THE SAME
C  ***  STORAGE.  ***
C
      INTEGER N
      DOUBLE PRECISION X(N), L(1), Y(N)
      DOUBLE PRECISION DD7TPR
      EXTERNAL DD7TPR
      INTEGER I, J, K
      DOUBLE PRECISION T, ZERO
      PARAMETER (ZERO=0.D+0)
C
      DO 10 K = 1, N
       IF (Y(K) .NE. ZERO) GO TO 20
       X(K) = ZERO
 10      CONTINUE
      GO TO 999
 20   J = K*(K+1)/2
      X(K) = Y(K) / L(J)
      IF (K .GE. N) GO TO 999
      K = K + 1
      DO 30 I = K, N
       T = DD7TPR(I-1, L(J+1), X)
       J = J + I
       X(I) = (Y(I) - T)/L(J)
 30      CONTINUE
 999  RETURN
C  ***  LAST CARD OF DL7IVM FOLLOWS  ***
      END
      SUBROUTINE DD7UPD(D, DR, IV, LIV, LV, N, ND, NN, N2, P, V)
C
C  ***  UPDATE SCALE VECTOR D FOR NL2IT  ***
C
C  ***  PARAMETER DECLARATIONS  ***
C
      INTEGER LIV, LV, N, ND, NN, N2, P
      INTEGER IV(LIV)
      DOUBLE PRECISION D(P), DR(ND,P), V(LV)
C     DIMENSION V(*)
C
C  ***  LOCAL VARIABLES  ***
C
      INTEGER D0, I, JCN0, JCN1, JCNI, JTOL0, JTOLI, K, SII
      DOUBLE PRECISION T, VDFAC
C
C     ***  CONSTANTS  ***
C
      DOUBLE PRECISION ZERO
C
C  ***  INTRINSIC FUNCTIONS  ***
C/+
      DOUBLE PRECISION DSQRT
C/
C  ***  EXTERNAL SUBROUTINE  ***
C
      EXTERNAL DV7SCP
C
C DV7SCP... SETS ALL COMPONENTS OF A VECTOR TO A SCALAR.
C
C  ***  SUBSCRIPTS FOR IV AND V  ***
C
      INTEGER DFAC, DTYPE, JCN, JTOL, NITER, S
      PARAMETER (DFAC=41, DTYPE=16, JCN=66, JTOL=59, NITER=31, S=62)
C
      PARAMETER (ZERO=0.D+0)
C
C-------------------------------  BODY  --------------------------------
C
      IF (IV(DTYPE) .NE. 1 .AND. IV(NITER) .GT. 0) GO TO 999
      JCN1 = IV(JCN)
      JCN0 = IABS(JCN1) - 1
      IF (JCN1 .LT. 0) GO TO 10
       IV(JCN) = -JCN1
       CALL DV7SCP(P, V(JCN1), ZERO)
 10   DO 30 I = 1, P
       JCNI = JCN0 + I
       T  = V(JCNI)
       DO 20 K = 1, NN
 20           T = DMAX1(T, DABS(DR(K,I)))
       V(JCNI) = T
 30      CONTINUE
      IF (N2 .LT. N) GO TO 999
      VDFAC = V(DFAC)
      JTOL0 = IV(JTOL) - 1
      D0 = JTOL0 + P
      SII = IV(S) - 1
      DO 50 I = 1, P
       SII = SII + I
       JCNI = JCN0 + I
       T = V(JCNI)
       IF (V(SII) .GT. ZERO) T = DMAX1(DSQRT(V(SII)), T)
       JTOLI = JTOL0 + I
       D0 = D0 + 1
       IF (T .LT. V(JTOLI)) T = DMAX1(V(D0), V(JTOLI))
       D(I) = DMAX1(VDFAC*D(I), T)
 50      CONTINUE
C
 999  RETURN
C  ***  LAST CARD OF DD7UPD FOLLOWS  ***
      END
      SUBROUTINE DV7SHF(N, K, X)
C
C  ***  SHIFT X(K),...,X(N) LEFT CIRCULARLY ONE POSITION  ***
C
      INTEGER N, K
      DOUBLE PRECISION X(N)
C
      INTEGER I, NM1
      DOUBLE PRECISION T
C
      IF (K .GE. N) GO TO 999
      NM1 = N - 1
      T = X(K)
      DO 10 I = K, NM1
 10      X(I) = X(I+1)
      X(N) = T
 999  RETURN
      END
      SUBROUTINE DS3GRD(ALPHA, B, D, ETA0, FX, G, IRC, P, W, X)
C
C  ***  COMPUTE FINITE DIFFERENCE GRADIENT BY STWEART*S SCHEME  ***
C
C     ***  PARAMETERS  ***
C
      INTEGER IRC, P
      DOUBLE PRECISION ALPHA(P), B(2,P), D(P), ETA0, FX, G(P), W(6),
     1                 X(P)
C
C.......................................................................
C
C     ***  PURPOSE  ***
C
C        THIS SUBROUTINE USES AN EMBELLISHED FORM OF THE FINITE-DIFFER-
C     ENCE SCHEME PROPOSED BY STEWART (REF. 1) TO APPROXIMATE THE
C     GRADIENT OF THE FUNCTION F(X), WHOSE VALUES ARE SUPPLIED BY
C     REVERSE COMMUNICATION.
C
C     ***  PARAMETER DESCRIPTION  ***
C
C  ALPHA IN  (APPROXIMATE) DIAGONAL ELEMENTS OF THE HESSIAN OF F(X).
C      B IN  ARRAY OF SIMPLE LOWER AND UPPER BOUNDS ON X.  X MUST
C             SATISFY B(1,I) .LE. X(I) .LE. B(2,I), I = 1(1)P.
C             FOR ALL I WITH B(1,I) .GE. B(2,I), DS3GRD SIMPLY
C             SETS G(I) TO 0.
C      D IN  SCALE VECTOR SUCH THAT D(I)*X(I), I = 1,...,P, ARE IN
C             COMPARABLE UNITS.
C   ETA0 IN  ESTIMATED BOUND ON RELATIVE ERROR IN THE FUNCTION VALUE...
C             (TRUE VALUE) = (COMPUTED VALUE)*(1+E),   WHERE
C             ABS(E) .LE. ETA0.
C     FX I/O ON INPUT,  FX  MUST BE THE COMPUTED VALUE OF F(X).  ON
C             OUTPUT WITH IRC = 0, FX HAS BEEN RESTORED TO ITS ORIGINAL
C             VALUE, THE ONE IT HAD WHEN DS3GRD WAS LAST CALLED WITH
C             IRC = 0.
C      G I/O ON INPUT WITH IRC = 0, G SHOULD CONTAIN AN APPROXIMATION
C             TO THE GRADIENT OF F NEAR X, E.G., THE GRADIENT AT THE
C             PREVIOUS ITERATE.  WHEN DS3GRD RETURNS WITH IRC = 0, G IS
C             THE DESIRED FINITE-DIFFERENCE APPROXIMATION TO THE
C             GRADIENT AT X.
C    IRC I/O INPUT/RETURN CODE... BEFORE THE VERY FIRST CALL ON DS3GRD,
C             THE CALLER MUST SET IRC TO 0.  WHENEVER DS3GRD RETURNS A
C             NONZERO VALUE (OF AT MOST P) FOR IRC, IT HAS PERTURBED
C             SOME COMPONENT OF X... THE CALLER SHOULD EVALUATE F(X)
C             AND CALL DS3GRD AGAIN WITH FX = F(X).  IF B PREVENTS
C             ESTIMATING G(I) I.E., IF THERE IS AN I WITH
C             B(1,I) .LT. B(2,I) BUT WITH B(1,I) SO CLOSE TO B(2,I)
C             THAT THE FINITE-DIFFERENCING STEPS CANNOT BE CHOSEN,
C             THEN DS3GRD RETURNS WITH IRC .GT. P.
C      P IN  THE NUMBER OF VARIABLES (COMPONENTS OF X) ON WHICH F
C             DEPENDS.
C      X I/O ON INPUT WITH IRC = 0, X IS THE POINT AT WHICH THE
C             GRADIENT OF F IS DESIRED.  ON OUTPUT WITH IRC NONZERO, X
C             IS THE POINT AT WHICH F SHOULD BE EVALUATED.  ON OUTPUT
C             WITH IRC = 0, X HAS BEEN RESTORED TO ITS ORIGINAL VALUE
C             (THE ONE IT HAD WHEN DS3GRD WAS LAST CALLED WITH IRC = 0)
C             AND G CONTAINS THE DESIRED GRADIENT APPROXIMATION.
C      W I/O WORK VECTOR OF LENGTH 6 IN WHICH DS3GRD SAVES CERTAIN
C             QUANTITIES WHILE THE CALLER IS EVALUATING F(X) AT A
C             PERTURBED X.
C
C     ***  APPLICATION AND USAGE RESTRICTIONS  ***
C
C        THIS ROUTINE IS INTENDED FOR USE WITH QUASI-NEWTON ROUTINES
C     FOR UNCONSTRAINED MINIMIZATION (IN WHICH CASE  ALPHA  COMES FROM
C     THE DIAGONAL OF THE QUASI-NEWTON HESSIAN APPROXIMATION).
C
C     ***  ALGORITHM NOTES  ***
C
C        THIS CODE DEPARTS FROM THE SCHEME PROPOSED BY STEWART (REF. 1)
C     IN ITS GUARDING AGAINST OVERLY LARGE OR SMALL STEP SIZES AND ITS
C     HANDLING OF SPECIAL CASES (SUCH AS ZERO COMPONENTS OF ALPHA OR G).
C
C     ***  REFERENCES  ***
C
C 1. STEWART, G.W. (1967), A MODIFICATION OF DAVIDON*S MINIMIZATION
C        METHOD TO ACCEPT DIFFERENCE APPROXIMATIONS OF DERIVATIVES,
C        J. ASSOC. COMPUT. MACH. 14, PP. 72-83.
C
C     ***  HISTORY  ***
C
C     DESIGNED AND CODED BY DAVID M. GAY (SUMMER 1977/SUMMER 1980).
C
C     ***  GENERAL  ***
C
C        THIS ROUTINE WAS PREPARED IN CONNECTION WITH WORK SUPPORTED BY
C     THE NATIONAL SCIENCE FOUNDATION UNDER GRANTS MCS76-00324 AND
C     MCS-7906671.
C
C.......................................................................
C
C     *****  EXTERNAL FUNCTION  *****
C
      DOUBLE PRECISION DR7MDC
      EXTERNAL DR7MDC
C DR7MDC... RETURNS MACHINE-DEPENDENT CONSTANTS.
C
C     ***** INTRINSIC FUNCTIONS *****
C/+
      DOUBLE PRECISION DSQRT
C/
C     ***** LOCAL VARIABLES *****
C
      LOGICAL HIT
      INTEGER FH, FX0, HSAVE, I, XISAVE
      DOUBLE PRECISION AAI, AFX, AFXETA, AGI, ALPHAI, AXI, AXIBAR,
     1                 DISCON, ETA, GI, H, HMIN, XI, XIH
      DOUBLE PRECISION C2000, FOUR, HMAX0, HMIN0, H0, MACHEP, ONE, P002,
     1                 THREE, TWO, ZERO
C
      PARAMETER (C2000=2.0D+3, FOUR=4.0D+0, HMAX0=0.02D+0, HMIN0=5.0D+1,
     1     ONE=1.0D+0, P002=0.002D+0, THREE=3.0D+0,
     2     TWO=2.0D+0, ZERO=0.0D+0)
      PARAMETER (FH=3, FX0=4, HSAVE=5, XISAVE=6)
C
C---------------------------------  BODY  ------------------------------
C
      IF (IRC .LT. 0) GO TO 80
      IF (IRC .GT. 0) GO TO 210
C
C     ***  FRESH START -- GET MACHINE-DEPENDENT CONSTANTS  ***
C
C     STORE MACHEP IN W(1) AND H0 IN W(2), WHERE MACHEP IS THE UNIT
C     ROUNDOFF (THE SMALLEST POSITIVE NUMBER SUCH THAT
C     1 + MACHEP .GT. 1  AND  1 - MACHEP .LT. 1),  AND  H0 IS THE
C     SQUARE-ROOT OF MACHEP.
C
      W(1) = DR7MDC(3)
      W(2) = DSQRT(W(1))
C
      W(FX0) = FX
C
C     ***  INCREMENT  I  AND START COMPUTING  G(I)  ***
C
 20   I = IABS(IRC) + 1
      IF (I .GT. P) GO TO 220
       IRC = I
       IF (B(1,I) .LT. B(2,I)) GO TO 30
          G(I) = ZERO
          GO TO 20
 30      AFX = DABS(W(FX0))
       MACHEP = W(1)
       H0 = W(2)
       HMIN = HMIN0 * MACHEP
       XI = X(I)
       W(XISAVE) = XI
       AXI = DABS(XI)
       AXIBAR = DMAX1(AXI, ONE/D(I))
       GI = G(I)
       AGI = DABS(GI)
       ETA = DABS(ETA0)
       IF (AFX .GT. ZERO) ETA = DMAX1(ETA, AGI*AXI*MACHEP/AFX)
       ALPHAI = ALPHA(I)
       IF (ALPHAI .EQ. ZERO) GO TO 130
       IF (GI .EQ. ZERO .OR. FX .EQ. ZERO) GO TO 140
       AFXETA = AFX*ETA
       AAI = DABS(ALPHAI)
C
C        *** COMPUTE H = STEWART*S FORWARD-DIFFERENCE STEP SIZE.
C
       IF (GI**2 .LE. AFXETA*AAI) GO TO 40
            H = TWO*DSQRT(AFXETA/AAI)
            H = H*(ONE - AAI*H/(THREE*AAI*H + FOUR*AGI))
            GO TO 50
C40      H = TWO*(AFXETA*AGI/(AAI**2))**(ONE/THREE)
 40      H = TWO * (AFXETA*AGI)**(ONE/THREE) * AAI**(-TWO/THREE)
       H = H*(ONE - TWO*AGI/(THREE*AAI*H + FOUR*AGI))
C
C        ***  ENSURE THAT  H  IS NOT INSIGNIFICANTLY SMALL  ***
C
 50      H = DMAX1(H, HMIN*AXIBAR)
C
C        *** USE FORWARD DIFFERENCE IF BOUND ON TRUNCATION ERROR IS AT
C        *** MOST 10**-3.
C
       IF (AAI*H .LE. P002*AGI) GO TO 120
C
C        *** COMPUTE H = STEWART*S STEP FOR CENTRAL DIFFERENCE.
C
       DISCON = C2000*AFXETA
       H = DISCON/(AGI + DSQRT(GI**2 + AAI*DISCON))
C
C        ***  ENSURE THAT  H  IS NEITHER TOO SMALL NOR TOO BIG  ***
C
       H = DMAX1(H, HMIN*AXIBAR)
       IF (H .GE. HMAX0*AXIBAR) H = AXIBAR * H0**(TWO/THREE)
C
C        ***  COMPUTE CENTRAL DIFFERENCE  ***
C
       XIH = XI + H
       IF (XI - H .LT. B(1,I)) GO TO 60
       IRC = -I
       IF (XIH .LE. B(2,I)) GO TO 200
          H = -H
          XIH = XI + H
          IF (XI + TWO*H .LT. B(1,I)) GO TO 190
          GO TO 70
 60      IF (XI + TWO*H .GT. B(2,I)) GO TO 190
C        *** MUST DO OFF-SIDE CENTRAL DIFFERENCE ***
 70      IRC = -(I + P)
       GO TO 200
C
 80      I = -IRC
       IF (I .LE. P) GO TO 100
       I = I - P
       IF (I .GT. P) GO TO 90
       W(FH) = FX
       H = TWO * W(HSAVE)
       XIH = W(XISAVE) + H
       IRC = IRC - P
       GO TO 200
C
C    *** FINISH OFF-SIDE CENTRAL DIFFERENCE ***
C
 90      I = I - P
       G(I) = (FOUR*W(FH) - FX - THREE*W(FX0)) / W(HSAVE)
       IRC = I
       X(I) = W(XISAVE)
       GO TO 20
C
 100     H = -W(HSAVE)
       IF (H .GT. ZERO) GO TO 110
       W(FH) = FX
       XIH = W(XISAVE) + H
       GO TO 200
C
 110     G(I) = (W(FH) - FX) / (TWO * H)
       X(I) = W(XISAVE)
       GO TO 20
C
C     ***  COMPUTE FORWARD DIFFERENCES IN VARIOUS CASES  ***
C
 120     IF (H .GE. HMAX0*AXIBAR) H = H0 * AXIBAR
       IF (ALPHAI*GI .LT. ZERO) H = -H
       GO TO 150
 130     H = AXIBAR
       GO TO 150
 140     H = H0 * AXIBAR
C
 150     HIT = .FALSE.
 160     XIH = XI + H
       IF (H .GT. ZERO) GO TO 170
          IF (XIH .GE. B(1,I)) GO TO 200
          GO TO 180
 170     IF (XIH .LE. B(2,I)) GO TO 200
 180        IF (HIT) GO TO 190
          HIT = .TRUE.
          H = -H
          GO TO 160
C
C        *** ERROR RETURN...
 190     IRC = I + P
       GO TO 230
C
C        *** RETURN FOR NEW FUNCTION VALUE...
 200     X(I) = XIH
       W(HSAVE) = H
       GO TO 999
C
C     ***  COMPUTE ACTUAL FORWARD DIFFERENCE  ***
C
 210     G(IRC) = (FX - W(FX0)) / W(HSAVE)
       X(IRC) = W(XISAVE)
       GO TO 20
C
C  ***  RESTORE FX AND INDICATE THAT G HAS BEEN COMPUTED  ***
C
 220  IRC = 0
 230  FX = W(FX0)
C
 999  RETURN
C  ***  LAST LINE OF DS3GRD FOLLOWS  ***
      END
      SUBROUTINE DL7UPD(BETA, GAMMA, L, LAMBDA, LPLUS, N, W, Z)
C
C  ***  COMPUTE LPLUS = SECANT UPDATE OF L  ***
C
C  ***  PARAMETER DECLARATIONS  ***
C
      INTEGER N
      DOUBLE PRECISION BETA(N), GAMMA(N), L(1), LAMBDA(N), LPLUS(1),
     1                 W(N), Z(N)
C     DIMENSION L(N*(N+1)/2), LPLUS(N*(N+1)/2)
C
C--------------------------  PARAMETER USAGE  --------------------------
C
C   BETA = SCRATCH VECTOR.
C  GAMMA = SCRATCH VECTOR.
C      L (INPUT) LOWER TRIANGULAR MATRIX, STORED ROWWISE.
C LAMBDA = SCRATCH VECTOR.
C  LPLUS (OUTPUT) LOWER TRIANGULAR MATRIX, STORED ROWWISE, WHICH MAY
C             OCCUPY THE SAME STORAGE AS  L.
C      N (INPUT) LENGTH OF VECTOR PARAMETERS AND ORDER OF MATRICES.
C      W (INPUT, DESTROYED ON OUTPUT) RIGHT SINGULAR VECTOR OF RANK 1
C             CORRECTION TO  L.
C      Z (INPUT, DESTROYED ON OUTPUT) LEFT SINGULAR VECTOR OF RANK 1
C             CORRECTION TO  L.
C
C-------------------------------  NOTES  -------------------------------
C
C  ***  APPLICATION AND USAGE RESTRICTIONS  ***
C
C        THIS ROUTINE UPDATES THE CHOLESKY FACTOR  L  OF A SYMMETRIC
C     POSITIVE DEFINITE MATRIX TO WHICH A SECANT UPDATE IS BEING
C     APPLIED -- IT COMPUTES A CHOLESKY FACTOR  LPLUS  OF
C     L * (I + Z*W**T) * (I + W*Z**T) * L**T.  IT IS ASSUMED THAT  W
C     AND  Z  HAVE BEEN CHOSEN SO THAT THE UPDATED MATRIX IS STRICTLY
C     POSITIVE DEFINITE.
C
C  ***  ALGORITHM NOTES  ***
C
C        THIS CODE USES RECURRENCE 3 OF REF. 1 (WITH D(J) = 1 FOR ALL J)
C     TO COMPUTE  LPLUS  OF THE FORM  L * (I + Z*W**T) * Q,  WHERE  Q
C     IS AN ORTHOGONAL MATRIX THAT MAKES THE RESULT LOWER TRIANGULAR.
C        LPLUS MAY HAVE SOME NEGATIVE DIAGONAL ELEMENTS.
C
C  ***  REFERENCES  ***
C
C 1.  GOLDFARB, D. (1976), FACTORIZED VARIABLE METRIC METHODS FOR UNCON-
C             STRAINED OPTIMIZATION, MATH. COMPUT. 30, PP. 796-811.
C
C  ***  GENERAL  ***
C
C     CODED BY DAVID M. GAY (FALL 1979).
C     THIS SUBROUTINE WAS WRITTEN IN CONNECTION WITH RESEARCH SUPPORTED
C     BY THE NATIONAL SCIENCE FOUNDATION UNDER GRANTS MCS-7600324 AND
C     MCS-7906671.
C
C------------------------  EXTERNAL QUANTITIES  ------------------------
C
C  ***  INTRINSIC FUNCTIONS  ***
C/+
      DOUBLE PRECISION DSQRT
C/
C--------------------------  LOCAL VARIABLES  --------------------------
C
      INTEGER I, IJ, J, JJ, JP1, K, NM1, NP1
      DOUBLE PRECISION A, B, BJ, ETA, GJ, LJ, LIJ, LJJ, NU, S, THETA,
     1                 WJ, ZJ
      DOUBLE PRECISION ONE, ZERO
C
C  ***  DATA INITIALIZATIONS  ***
C
      PARAMETER (ONE=1.D+0, ZERO=0.D+0)
C
C+++++++++++++++++++++++++++++++  BODY  ++++++++++++++++++++++++++++++++
C
      NU = ONE
      ETA = ZERO
      IF (N .LE. 1) GO TO 30
      NM1 = N - 1
C
C  ***  TEMPORARILY STORE S(J) = SUM OVER K = J+1 TO N OF W(K)**2 IN
C  ***  LAMBDA(J).
C
      S = ZERO
      DO 10 I = 1, NM1
       J = N - I
       S = S + W(J+1)**2
       LAMBDA(J) = S
 10      CONTINUE
C
C  ***  COMPUTE LAMBDA, GAMMA, AND BETA BY GOLDFARB*S RECURRENCE 3.
C
      DO 20 J = 1, NM1
       WJ = W(J)
       A = NU*Z(J) - ETA*WJ
       THETA = ONE + A*WJ
       S = A*LAMBDA(J)
       LJ = DSQRT(THETA**2 + A*S)
       IF (THETA .GT. ZERO) LJ = -LJ
       LAMBDA(J) = LJ
       B = THETA*WJ + S
       GAMMA(J) = B * NU / LJ
       BETA(J) = (A - B*ETA) / LJ
       NU = -NU / LJ
       ETA = -(ETA + (A**2)/(THETA - LJ)) / LJ
 20      CONTINUE
 30   LAMBDA(N) = ONE + (NU*Z(N) - ETA*W(N))*W(N)
C
C  ***  UPDATE L, GRADUALLY OVERWRITING  W  AND  Z  WITH  L*W  AND  L*Z.
C
      NP1 = N + 1
      JJ = N * (N + 1) / 2
      DO 60 K = 1, N
       J = NP1 - K
       LJ = LAMBDA(J)
       LJJ = L(JJ)
       LPLUS(JJ) = LJ * LJJ
       WJ = W(J)
       W(J) = LJJ * WJ
       ZJ = Z(J)
       Z(J) = LJJ * ZJ
       IF (K .EQ. 1) GO TO 50
       BJ = BETA(J)
       GJ = GAMMA(J)
       IJ = JJ + J
       JP1 = J + 1
       DO 40 I = JP1, N
            LIJ = L(IJ)
            LPLUS(IJ) = LJ*LIJ + BJ*W(I) + GJ*Z(I)
            W(I) = W(I) + LIJ*WJ
            Z(I) = Z(I) + LIJ*ZJ
            IJ = IJ + I
 40           CONTINUE
 50      JJ = JJ - J
 60      CONTINUE
C
      RETURN
C  ***  LAST CARD OF DL7UPD FOLLOWS  ***
      END
      SUBROUTINE DO7PRD(L, LS, P, S, W, Y, Z)
C
C  ***  FOR I = 1..L, SET S = S + W(I)*Y(.,I)*(Z(.,I)**T), I.E.,
C  ***        ADD W(I) TIMES THE OUTER PRODUCT OF Y(.,I) AND Z(.,I).
C
      INTEGER L, LS, P
      DOUBLE PRECISION S(LS), W(L), Y(P,L), Z(P,L)
C     DIMENSION S(P*(P+1)/2)
C
      INTEGER I, J, K, M
      DOUBLE PRECISION WK, YI, ZERO
      DATA ZERO/0.D+0/
C
      DO 30 K = 1, L
       WK = W(K)
       IF (WK .EQ. ZERO) GO TO 30
       M = 1
       DO 20 I = 1, P
            YI = WK * Y(I,K)
            DO 10 J = 1, I
               S(M) = S(M) + YI*Z(J,K)
               M = M + 1
 10                CONTINUE
 20           CONTINUE
 30      CONTINUE
C
      RETURN
C  ***  LAST CARD OF DO7PRD FOLLOWS  ***
      END
      SUBROUTINE DV7VMP(N, X, Y, Z, K)
C
C ***  SET X(I) = Y(I) * Z(I)**K, 1 .LE. I .LE. N (FOR K = 1 OR -1)  ***
C
      INTEGER N, K
      DOUBLE PRECISION X(N), Y(N), Z(N)
      INTEGER I
C
      IF (K .GE. 0) GO TO 20
      DO 10 I = 1, N
 10      X(I) = Y(I) / Z(I)
      GO TO 999
C
 20   DO 30 I = 1, N
 30      X(I) = Y(I) * Z(I)
 999  RETURN
C  ***  LAST CARD OF DV7VMP FOLLOWS  ***
      END
      SUBROUTINE DSM(M,N,NPAIRS,INDROW,INDCOL,NGRP,MAXGRP,MINGRP,
     *               INFO,IPNTR,JPNTR,IWA,LIWA,BWA)
      INTEGER M,N,NPAIRS,MAXGRP,MINGRP,INFO,LIWA
      INTEGER INDROW(NPAIRS),INDCOL(NPAIRS),NGRP(N),
     *        IPNTR(1),JPNTR(1),IWA(LIWA)
      LOGICAL BWA(N)
C     **********
C
C     SUBROUTINE DSM
C
C     THE PURPOSE OF DSM IS TO DETERMINE AN OPTIMAL OR NEAR-
C     OPTIMAL CONSISTENT PARTITION OF THE COLUMNS OF A SPARSE
C     M BY N MATRIX A.
C
C     THE SPARSITY PATTERN OF THE MATRIX A IS SPECIFIED BY
C     THE ARRAYS INDROW AND INDCOL. ON INPUT THE INDICES
C     FOR THE NON-ZERO ELEMENTS OF A ARE
C
C           INDROW(K),INDCOL(K), K = 1,2,...,NPAIRS.
C
C     THE (INDROW,INDCOL) PAIRS MAY BE SPECIFIED IN ANY ORDER.
C     DUPLICATE INPUT PAIRS ARE PERMITTED, BUT THE SUBROUTINE
C     ELIMINATES THEM.
C
C     THE SUBROUTINE PARTITIONS THE COLUMNS OF A INTO GROUPS
C     SUCH THAT COLUMNS IN THE SAME GROUP DO NOT HAVE A
C     NON-ZERO IN THE SAME ROW POSITION. A PARTITION OF THE
C     COLUMNS OF A WITH THIS PROPERTY IS CONSISTENT WITH THE
C     DIRECT DETERMINATION OF A.
C
C     THE SUBROUTINE STATEMENT IS
C
C       SUBROUTINE DSM(M,N,NPAIRS,INDROW,INDCOL,NGRP,MAXGRP,MINGRP,
C                      INFO,IPNTR,JPNTR,IWA,LIWA,BWA)
C
C     WHERE
C
C       M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C         OF ROWS OF A.
C
C       N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C         OF COLUMNS OF A.
C
C       NPAIRS IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE
C         NUMBER OF (INDROW,INDCOL) PAIRS USED TO DESCRIBE THE
C         SPARSITY PATTERN OF A.
C
C       INDROW IS AN INTEGER ARRAY OF LENGTH NPAIRS. ON INPUT INDROW
C         MUST CONTAIN THE ROW INDICES OF THE NON-ZERO ELEMENTS OF A.
C         ON OUTPUT INDROW IS PERMUTED SO THAT THE CORRESPONDING
C         COLUMN INDICES ARE IN NON-DECREASING ORDER. THE COLUMN
C         INDICES CAN BE RECOVERED FROM THE ARRAY JPNTR.
C
C       INDCOL IS AN INTEGER ARRAY OF LENGTH NPAIRS. ON INPUT INDCOL
C         MUST CONTAIN THE COLUMN INDICES OF THE NON-ZERO ELEMENTS OF
C         A. ON OUTPUT INDCOL IS PERMUTED SO THAT THE CORRESPONDING
C         ROW INDICES ARE IN NON-DECREASING ORDER. THE ROW INDICES
C         CAN BE RECOVERED FROM THE ARRAY IPNTR.
C
C       NGRP IS AN INTEGER OUTPUT ARRAY OF LENGTH N WHICH SPECIFIES
C         THE PARTITION OF THE COLUMNS OF A. COLUMN JCOL BELONGS
C         TO GROUP NGRP(JCOL).
C
C       MAXGRP IS AN INTEGER OUTPUT VARIABLE WHICH SPECIFIES THE
C         NUMBER OF GROUPS IN THE PARTITION OF THE COLUMNS OF A.
C
C       MINGRP IS AN INTEGER OUTPUT VARIABLE WHICH SPECIFIES A LOWER
C         BOUND FOR THE NUMBER OF GROUPS IN ANY CONSISTENT PARTITION
C         OF THE COLUMNS OF A.
C
C       INFO IS AN INTEGER OUTPUT VARIABLE SET AS FOLLOWS. FOR
C         NORMAL TERMINATION INFO = 1. IF M, N, OR NPAIRS IS NOT
C         POSITIVE OR LIWA IS LESS THAN MAX(M,6*N), THEN INFO = 0.
C         IF THE K-TH ELEMENT OF INDROW IS NOT AN INTEGER BETWEEN
C         1 AND M OR THE K-TH ELEMENT OF INDCOL IS NOT AN INTEGER
C         BETWEEN 1 AND N, THEN INFO = -K.
C
C       IPNTR IS AN INTEGER OUTPUT ARRAY OF LENGTH M + 1 WHICH
C         SPECIFIES THE LOCATIONS OF THE COLUMN INDICES IN INDCOL.
C         THE COLUMN INDICES FOR ROW I ARE
C
C               INDCOL(K), K = IPNTR(I),...,IPNTR(I+1)-1.
C
C         NOTE THAT IPNTR(M+1)-1 IS THEN THE NUMBER OF NON-ZERO
C         ELEMENTS OF THE MATRIX A.
C
C       JPNTR IS AN INTEGER OUTPUT ARRAY OF LENGTH N + 1 WHICH
C         SPECIFIES THE LOCATIONS OF THE ROW INDICES IN INDROW.
C         THE ROW INDICES FOR COLUMN J ARE
C
C               INDROW(K), K = JPNTR(J),...,JPNTR(J+1)-1.
C
C         NOTE THAT JPNTR(N+1)-1 IS THEN THE NUMBER OF NON-ZERO
C         ELEMENTS OF THE MATRIX A.
C
C       IWA IS AN INTEGER WORK ARRAY OF LENGTH LIWA.
C
C       LIWA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN
C         MAX(M,6*N).
C
C       BWA IS A LOGICAL WORK ARRAY OF LENGTH N.
C
C     SUBPROGRAMS CALLED
C
C       MINPACK-SUPPLIED ...D7EGR,I7DO,N7MSRT,M7SEQ,S7ETR,M7SLO,S7RTDT
C
C       FORTRAN-SUPPLIED ... MAX0
C
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. JUNE 1982.
C     THOMAS F. COLEMAN, BURTON S. GARBOW, JORGE J. MORE
C
C     **********
      INTEGER I,IR,J,JP,JPL,JPU,K,MAXCLQ,NNZ,NUMGRP
C
C     CHECK THE INPUT DATA.
C
      INFO = 0
      IF (M .LT. 1 .OR. N .LT. 1 .OR. NPAIRS .LT. 1 .OR.
     *    LIWA .LT. MAX0(M,6*N)) GO TO 130
      DO 10 K = 1, NPAIRS
       INFO = -K
       IF (INDROW(K) .LT. 1 .OR. INDROW(K) .GT. M .OR.
     *       INDCOL(K) .LT. 1 .OR. INDCOL(K) .GT. N) GO TO 130
   10    CONTINUE
      INFO = 1
C
C     SORT THE DATA STRUCTURE BY COLUMNS.
C
      CALL S7RTDT(N,NPAIRS,INDROW,INDCOL,JPNTR,IWA(1))
C
C     COMPRESS THE DATA AND DETERMINE THE NUMBER OF
C     NON-ZERO ELEMENTS OF A.
C
      DO 20 I = 1, M
       IWA(I) = 0
   20    CONTINUE
      NNZ = 0
      DO 70 J = 1, N
       JPL = JPNTR(J)
       JPU = JPNTR(J+1) - 1
       JPNTR(J) = NNZ + 1
       IF (JPU .LT. JPL) GO TO 60
       DO 40 JP = JPL, JPU
          IR = INDROW(JP)
          IF (IWA(IR) .NE. 0) GO TO 30
          NNZ = NNZ + 1
          INDROW(NNZ) = IR
          IWA(IR) = 1
   30       CONTINUE
   40       CONTINUE
       JPL = JPNTR(J)
       DO 50 JP = JPL, NNZ
          IR = INDROW(JP)
          IWA(IR) = 0
   50       CONTINUE
   60    CONTINUE
   70    CONTINUE
      JPNTR(N+1) = NNZ + 1
C
C     EXTEND THE DATA STRUCTURE TO ROWS.
C
      CALL S7ETR(M,N,INDROW,JPNTR,INDCOL,IPNTR,IWA(1))
C
C     DETERMINE A LOWER BOUND FOR THE NUMBER OF GROUPS.
C
      MINGRP = 0
      DO 80 I = 1, M
       MINGRP = MAX0(MINGRP,IPNTR(I+1)-IPNTR(I))
   80    CONTINUE
C
C     DETERMINE THE DEGREE SEQUENCE FOR THE INTERSECTION
C     GRAPH OF THE COLUMNS OF A.
C
      CALL D7EGR(N,INDROW,JPNTR,INDCOL,IPNTR,IWA(5*N+1),IWA(N+1),BWA)
C
C     COLOR THE INTERSECTION GRAPH OF THE COLUMNS OF A
C     WITH THE SMALLEST-LAST (SL) ORDERING.
C
      CALL M7SLO(N,INDROW,JPNTR,INDCOL,IPNTR,IWA(5*N+1),IWA(4*N+1),
     *         MAXCLQ,IWA(1),IWA(N+1),IWA(2*N+1),IWA(3*N+1),BWA)
      CALL M7SEQ(N,INDROW,JPNTR,INDCOL,IPNTR,IWA(4*N+1),NGRP,MAXGRP,
     *         IWA(N+1),BWA)
      MINGRP = MAX0(MINGRP,MAXCLQ)
      IF (MAXGRP .EQ. MINGRP) GO TO 130
C
C     COLOR THE INTERSECTION GRAPH OF THE COLUMNS OF A
C     WITH THE INCIDENCE-DEGREE (ID) ORDERING.
C
      CALL I7DO(M,N,INDROW,JPNTR,INDCOL,IPNTR,IWA(5*N+1),IWA(4*N+1),
     *         MAXCLQ,IWA(1),IWA(N+1),IWA(2*N+1),IWA(3*N+1),BWA)
      CALL M7SEQ(N,INDROW,JPNTR,INDCOL,IPNTR,IWA(4*N+1),IWA(1),NUMGRP,
     *         IWA(N+1),BWA)
      MINGRP = MAX0(MINGRP,MAXCLQ)
      IF (NUMGRP .GE. MAXGRP) GO TO 100
      MAXGRP = NUMGRP
      DO 90 J = 1, N
       NGRP(J) = IWA(J)
   90    CONTINUE
      IF (MAXGRP .EQ. MINGRP) GO TO 130
  100 CONTINUE
C
C     COLOR THE INTERSECTION GRAPH OF THE COLUMNS OF A
C     WITH THE LARGEST-FIRST (LF) ORDERING.
C
      CALL N7MSRT(N,N-1,IWA(5*N+1),-1,IWA(4*N+1),IWA(2*N+1),IWA(N+1))
      CALL M7SEQ(N,INDROW,JPNTR,INDCOL,IPNTR,IWA(4*N+1),IWA(1),NUMGRP,
     *         IWA(N+1),BWA)
      IF (NUMGRP .GE. MAXGRP) GO TO 120
      MAXGRP = NUMGRP
      DO 110 J = 1, N
       NGRP(J) = IWA(J)
  110    CONTINUE
  120 CONTINUE
C
C     EXIT FROM PROGRAM.
C
  130 CONTINUE
      RETURN
C
C     LAST CARD OF SUBROUTINE DSM.
C
      END
      SUBROUTINE M7SEQ(N,INDROW,JPNTR,INDCOL,IPNTR,LIST,NGRP,MAXGRP,
     *               IWA,BWA)
      INTEGER N,MAXGRP
      INTEGER INDROW(1),JPNTR(1),INDCOL(1),IPNTR(1),LIST(N),NGRP(N),
     *        IWA(N)
      LOGICAL BWA(N)
C     **********
C
C     SUBROUTINE M7SEQ
C
C     GIVEN THE SPARSITY PATTERN OF AN M BY N MATRIX A, THIS
C     SUBROUTINE DETERMINES A CONSISTENT PARTITION OF THE
C     COLUMNS OF A BY A SEQUENTIAL ALGORITHM.
C
C     A CONSISTENT PARTITION IS DEFINED IN TERMS OF THE LOOPLESS
C     GRAPH G WITH VERTICES A(J), J = 1,2,...,N WHERE A(J) IS THE
C     J-TH COLUMN OF A AND WITH EDGE (A(I),A(J)) IF AND ONLY IF
C     COLUMNS I AND J HAVE A NON-ZERO IN THE SAME ROW POSITION.
C
C     A PARTITION OF THE COLUMNS OF A INTO GROUPS IS CONSISTENT
C     IF THE COLUMNS IN ANY GROUP ARE NOT ADJACENT IN THE GRAPH G.
C     IN GRAPH-THEORY TERMINOLOGY, A CONSISTENT PARTITION OF THE
C     COLUMNS OF A CORRESPONDS TO A COLORING OF THE GRAPH G.
C
C     THE SUBROUTINE EXAMINES THE COLUMNS IN THE ORDER SPECIFIED
C     BY THE ARRAY LIST, AND ASSIGNS THE CURRENT COLUMN TO THE
C     GROUP WITH THE SMALLEST POSSIBLE NUMBER.
C
C     NOTE THAT THE VALUE OF M IS NOT NEEDED BY M7SEQ AND IS
C     THEREFORE NOT PRESENT IN THE SUBROUTINE STATEMENT.
C
C     THE SUBROUTINE STATEMENT IS
C
C       SUBROUTINE M7SEQ(N,INDROW,JPNTR,INDCOL,IPNTR,LIST,NGRP,MAXGRP,
C                      IWA,BWA)
C
C     WHERE
C
C       N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C         OF COLUMNS OF A.
C
C       INDROW IS AN INTEGER INPUT ARRAY WHICH CONTAINS THE ROW
C         INDICES FOR THE NON-ZEROES IN THE MATRIX A.
C
C       JPNTR IS AN INTEGER INPUT ARRAY OF LENGTH N + 1 WHICH
C         SPECIFIES THE LOCATIONS OF THE ROW INDICES IN INDROW.
C         THE ROW INDICES FOR COLUMN J ARE
C
C               INDROW(K), K = JPNTR(J),...,JPNTR(J+1)-1.
C
C         NOTE THAT JPNTR(N+1)-1 IS THEN THE NUMBER OF NON-ZERO
C         ELEMENTS OF THE MATRIX A.
C
C       INDCOL IS AN INTEGER INPUT ARRAY WHICH CONTAINS THE
C         COLUMN INDICES FOR THE NON-ZEROES IN THE MATRIX A.
C
C       IPNTR IS AN INTEGER INPUT ARRAY OF LENGTH M + 1 WHICH
C         SPECIFIES THE LOCATIONS OF THE COLUMN INDICES IN INDCOL.
C         THE COLUMN INDICES FOR ROW I ARE
C
C               INDCOL(K), K = IPNTR(I),...,IPNTR(I+1)-1.
C
C         NOTE THAT IPNTR(M+1)-1 IS THEN THE NUMBER OF NON-ZERO
C         ELEMENTS OF THE MATRIX A.
C
C       LIST IS AN INTEGER INPUT ARRAY OF LENGTH N WHICH SPECIFIES
C         THE ORDER TO BE USED BY THE SEQUENTIAL ALGORITHM.
C         THE J-TH COLUMN IN THIS ORDER IS LIST(J).
C
C       NGRP IS AN INTEGER OUTPUT ARRAY OF LENGTH N WHICH SPECIFIES
C         THE PARTITION OF THE COLUMNS OF A. COLUMN JCOL BELONGS
C         TO GROUP NGRP(JCOL).
C
C       MAXGRP IS AN INTEGER OUTPUT VARIABLE WHICH SPECIFIES THE
C         NUMBER OF GROUPS IN THE PARTITION OF THE COLUMNS OF A.
C
C       IWA IS AN INTEGER WORK ARRAY OF LENGTH N.
C
C       BWA IS A LOGICAL WORK ARRAY OF LENGTH N.
C
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. JUNE 1982.
C     THOMAS F. COLEMAN, BURTON S. GARBOW, JORGE J. MORE
C
C     **********
      INTEGER DEG,IC,IP,IPL,IPU,IR,J,JCOL,JP,JPL,JPU,L,NUMGRP
C
C     INITIALIZATION BLOCK.
C
      MAXGRP = 0
      DO 10 JP = 1, N
       NGRP(JP) = N
       BWA(JP) = .FALSE.
   10    CONTINUE
      BWA(N) = .TRUE.
C
C     BEGINNING OF ITERATION LOOP.
C
      DO 100 J = 1, N
       JCOL = LIST(J)
C
C        FIND ALL COLUMNS ADJACENT TO COLUMN JCOL.
C
       DEG = 0
C
C        DETERMINE ALL POSITIONS (IR,JCOL) WHICH CORRESPOND
C        TO NON-ZEROES IN THE MATRIX.
C
       JPL = JPNTR(JCOL)
       JPU = JPNTR(JCOL+1) - 1
       IF (JPU .LT. JPL) GO TO 50
       DO 40 JP = JPL, JPU
          IR = INDROW(JP)
C
C           FOR EACH ROW IR, DETERMINE ALL POSITIONS (IR,IC)
C           WHICH CORRESPOND TO NON-ZEROES IN THE MATRIX.
C
          IPL = IPNTR(IR)
          IPU = IPNTR(IR+1) - 1
          DO 30 IP = IPL, IPU
             IC = INDCOL(IP)
             L = NGRP(IC)
C
C              ARRAY BWA MARKS THE GROUP NUMBERS OF THE
C              COLUMNS WHICH ARE ADJACENT TO COLUMN JCOL.
C              ARRAY IWA RECORDS THE MARKED GROUP NUMBERS.
C
             IF (BWA(L)) GO TO 20
             BWA(L) = .TRUE.
             DEG = DEG + 1
             IWA(DEG) = L
   20          CONTINUE
   30          CONTINUE
   40       CONTINUE
   50    CONTINUE
C
C        ASSIGN THE SMALLEST UN-MARKED GROUP NUMBER TO JCOL.
C
       DO 60 JP = 1, N
          NUMGRP = JP
          IF (.NOT. BWA(JP)) GO TO 70
   60       CONTINUE
   70    CONTINUE
       NGRP(JCOL) = NUMGRP
       MAXGRP = MAX0(MAXGRP,NUMGRP)
C
C        UN-MARK THE GROUP NUMBERS.
C
       IF (DEG .LT. 1) GO TO 90
       DO 80 JP = 1, DEG
          L = IWA(JP)
          BWA(L) = .FALSE.
   80       CONTINUE
   90    CONTINUE
  100    CONTINUE
C
C        END OF ITERATION LOOP.
C
      RETURN
C
C     LAST CARD OF SUBROUTINE M7SEQ.
C
      END
      SUBROUTINE DL7TSQ(N, A, L)
C
C  ***  SET A TO LOWER TRIANGLE OF (L**T) * L  ***
C
C  ***  L = N X N LOWER TRIANG. MATRIX STORED ROWWISE.  ***
C  ***  A IS ALSO STORED ROWWISE AND MAY SHARE STORAGE WITH L.  ***
C
      INTEGER N
      DOUBLE PRECISION A(1), L(1)
C     DIMENSION A(N*(N+1)/2), L(N*(N+1)/2)
C
      INTEGER I, II, IIM1, I1, J, K, M
      DOUBLE PRECISION LII, LJ
C
      II = 0
      DO 50 I = 1, N
       I1 = II + 1
       II = II + I
       M = 1
       IF (I .EQ. 1) GO TO 30
       IIM1 = II - 1
       DO 20 J = I1, IIM1
            LJ = L(J)
            DO 10 K = I1, J
               A(M) = A(M) + LJ*L(K)
               M = M + 1
 10                CONTINUE
 20           CONTINUE
 30      LII = L(II)
       DO 40 J = I1, II
 40           A(J) = LII * L(J)
 50      CONTINUE
C
      RETURN
C  ***  LAST CARD OF DL7TSQ FOLLOWS  ***
      END
      DOUBLE PRECISION FUNCTION DRLDST(P, D, X, X0)
C
C  ***  COMPUTE AND RETURN RELATIVE DIFFERENCE BETWEEN X AND X0  ***
C  ***  NL2SOL VERSION 2.2  ***
C
      INTEGER P
      DOUBLE PRECISION D(P), X(P), X0(P)
C
      INTEGER I
      DOUBLE PRECISION EMAX, T, XMAX, ZERO
      PARAMETER (ZERO=0.D+0)
C
C  ***  BODY  ***
C
      EMAX = ZERO
      XMAX = ZERO
      DO 10 I = 1, P
       T = DABS(D(I) * (X(I) - X0(I)))
       IF (EMAX .LT. T) EMAX = T
       T = D(I) * (DABS(X(I)) + DABS(X0(I)))
       IF (XMAX .LT. T) XMAX = T
 10      CONTINUE
      DRLDST = ZERO
      IF (XMAX .GT. ZERO) DRLDST = EMAX / XMAX
      RETURN
C  ***  LAST CARD OF DRLDST FOLLOWS  ***
      END
      SUBROUTINE DRN2GB(B, D, DR, IV, LIV, LV, N, ND, N1, N2, P, R,
     1                  RD, V, X)
C
C  ***  REVISED ITERATION DRIVER FOR NL2SOL WITH SIMPLE BOUNDS  ***
C
      INTEGER LIV, LV, N, ND, N1, N2, P
      INTEGER IV(LIV)
      DOUBLE PRECISION B(2,P), D(P), DR(ND,P), R(ND), RD(ND), V(LV),
     1                 X(P)
C
C--------------------------  PARAMETER USAGE  --------------------------
C
C B........ BOUNDS ON X.
C D........ SCALE VECTOR.
C DR....... DERIVATIVES OF R AT X.
C IV....... INTEGER VALUES ARRAY.
C LIV...... LENGTH OF IV... LIV MUST BE AT LEAST 4*P + 82.
C LV....... LENGTH OF V...  LV  MUST BE AT LEAST 105 + P*(2*P+20).
C N........ TOTAL NUMBER OF RESIDUALS.
C ND....... MAX. NO. OF RESIDUALS PASSED ON ONE CALL.
C N1....... LOWEST  ROW INDEX FOR RESIDUALS SUPPLIED THIS TIME.
C N2....... HIGHEST ROW INDEX FOR RESIDUALS SUPPLIED THIS TIME.
C P........ NUMBER OF PARAMETERS (COMPONENTS OF X) BEING ESTIMATED.
C R........ RESIDUALS.
C V........ FLOATING-POINT VALUES ARRAY.
C X........ PARAMETER VECTOR BEING ESTIMATED (INPUT = INITIAL GUESS,
C             OUTPUT = BEST VALUE FOUND).
C
C  ***  DISCUSSION  ***
C
C     THIS ROUTINE CARRIES OUT ITERATIONS FOR SOLVING NONLINEAR
C  LEAST SQUARES PROBLEMS.  IT IS SIMILAR TO  DRN2G, EXCEPT THAT
C  THIS ROUTINE ENFORCES THE BOUNDS  B(1,I) .LE. X(I) .LE. B(2,I),
C  I = 1(1)P.
C
C  ***  GENERAL  ***
C
C     CODED BY DAVID M. GAY.
C
C+++++++++++++++++++++++++++++  DECLARATIONS  ++++++++++++++++++++++++++
C
C  ***  EXTERNAL FUNCTIONS AND SUBROUTINES  ***
C
      DOUBLE PRECISION DD7TPR, DV2NRM
      EXTERNAL DIVSET, DD7TPR,DD7UPD, DG7ITB,DITSUM,DL7VML, DQ7APL,
     1        DQ7RAD, DR7TVM,DV7CPY, DV7SCP, DV2NRM
C
C DIVSET.... PROVIDES DEFAULT IV AND V INPUT COMPONENTS.
C DD7TPR... COMPUTES INNER PRODUCT OF TWO VECTORS.
C DD7UPD...  UPDATES SCALE VECTOR D.
C DG7ITB... PERFORMS BASIC MINIMIZATION ALGORITHM.
C DITSUM.... PRINTS ITERATION SUMMARY, INFO ABOUT INITIAL AND FINAL X.
C DL7VML.... COMPUTES L * V, V = VECTOR, L = LOWER TRIANGULAR MATRIX.
C DQ7APL... APPLIES QR TRANSFORMATIONS STORED BY DQ7RAD.
C DQ7RAD.... ADDS A NEW BLOCK OF ROWS TO QR DECOMPOSITION.
C DR7TVM... MULT. VECTOR BY TRANS. OF UPPER TRIANG. MATRIX FROM QR FACT.
C DV7CPY.... COPIES ONE VECTOR TO ANOTHER.
C DV7SCP... SETS ALL ELEMENTS OF A VECTOR TO A SCALAR.
C DV2NRM... RETURNS THE 2-NORM OF A VECTOR.
C
C
C  ***  LOCAL VARIABLES  ***
C
      INTEGER G1, GI, I, IV1, IVMODE, JTOL1, L, LH, NN, QTR1,
     1        RD1, RMAT1, YI, Y1
      DOUBLE PRECISION T
C
      DOUBLE PRECISION HALF, ZERO
C
C  ***  SUBSCRIPTS FOR IV AND V  ***
C
      INTEGER DINIT, DTYPE, DTINIT, D0INIT, F, G, JCN, JTOL, MODE,
     1        NEXTV, NF0, NF00, NF1, NFCALL, NFCOV, NFGCAL, QTR, RDREQ,
     1        REGD, RESTOR, RLIMIT, RMAT, TOOBIG, VNEED
C
C  ***  IV SUBSCRIPT VALUES  ***
C
      PARAMETER (DTYPE=16, G=28, JCN=66, JTOL=59, MODE=35, NEXTV=47,
     1           NF0=68, NF00=81, NF1=69, NFCALL=6, NFCOV=52, NFGCAL=7,
     2           QTR=77, RDREQ=57, RESTOR=9, REGD=67, RMAT=78, TOOBIG=2,
     3           VNEED=4)
C
C  ***  V SUBSCRIPT VALUES  ***
C
      PARAMETER (DINIT=38, DTINIT=39, D0INIT=40, F=10, RLIMIT=46)
      PARAMETER (HALF=0.5D+0, ZERO=0.D+0)
C
C+++++++++++++++++++++++++++++++  BODY  ++++++++++++++++++++++++++++++++
C
      LH = P * (P+1) / 2
      IF (IV(1) .EQ. 0) CALL DIVSET(1, IV, LIV, LV, V)
      IV1 = IV(1)
      IF (IV1 .GT. 2) GO TO 10
       NN = N2 - N1 + 1
       IV(RESTOR) = 0
       I = IV1 + 4
       IF (IV(TOOBIG) .EQ. 0) GO TO (150, 130, 150, 120, 120, 150), I
       IF (I .NE. 5) IV(1) = 2
       GO TO 40
C
C  ***  FRESH START OR RESTART -- CHECK INPUT INTEGERS  ***
C
 10   IF (ND .LE. 0) GO TO 220
      IF (P .LE. 0) GO TO 220
      IF (N .LE. 0) GO TO 220
      IF (IV1 .EQ. 14) GO TO 30
      IF (IV1 .GT. 16) GO TO 270
      IF (IV1 .LT. 12) GO TO 40
      IF (IV1 .EQ. 12) IV(1) = 13
      IF (IV(1) .NE. 13) GO TO 20
      IV(VNEED) = IV(VNEED) + P*(P+15)/2
 20   CALL DG7ITB(B, D, X, IV, LIV, LV, P, P, V, X, X)
      IF (IV(1) .NE. 14) GO TO 999
C
C  ***  STORAGE ALLOCATION  ***
C
      IV(G) = IV(NEXTV)
      IV(JCN) = IV(G) + 2*P
      IV(RMAT) = IV(JCN) + P
      IV(QTR) = IV(RMAT) + LH
      IV(JTOL) = IV(QTR) + 2*P
      IV(NEXTV) = IV(JTOL) + 2*P
C  ***  TURN OFF COVARIANCE COMPUTATION  ***
      IV(RDREQ) = 0
      IF (IV1 .EQ. 13) GO TO 999
C
 30   JTOL1 = IV(JTOL)
      IF (V(DINIT) .GE. ZERO) CALL DV7SCP(P, D, V(DINIT))
      IF (V(DTINIT) .GT. ZERO) CALL DV7SCP(P, V(JTOL1), V(DTINIT))
      I = JTOL1 + P
      IF (V(D0INIT) .GT. ZERO) CALL DV7SCP(P, V(I), V(D0INIT))
      IV(NF0) = 0
      IV(NF1) = 0
      IF (ND .GE. N) GO TO 40
C
C  ***  SPECIAL CASE HANDLING OF FIRST FUNCTION AND GRADIENT EVALUATION
C  ***  -- ASK FOR BOTH RESIDUAL AND JACOBIAN AT ONCE
C
      G1 = IV(G)
      Y1 = G1 + P
      CALL DG7ITB(B, D, V(G1), IV, LIV, LV, P, P, V, X, V(Y1))
      IF (IV(1) .NE. 1) GO TO 260
      V(F) = ZERO
      CALL DV7SCP(P, V(G1), ZERO)
      IV(1) = -1
      QTR1 = IV(QTR)
      CALL DV7SCP(P, V(QTR1), ZERO)
      IV(REGD) = 0
      RMAT1 = IV(RMAT)
      GO TO 100
C
 40   G1 = IV(G)
      Y1 = G1 + P
      CALL DG7ITB(B, D, V(G1), IV, LIV, LV, P, P, V, X, V(Y1))
      IF (IV(1) .EQ. 2) GO TO 60
      IF (IV(1) .GT. 2) GO TO 260
C
      V(F) = ZERO
      IF (IV(NF1) .EQ. 0) GO TO 240
      IF (IV(RESTOR) .NE. 2) GO TO 240
      IV(NF0) = IV(NF1)
      CALL DV7CPY(N, RD, R)
      IV(REGD) = 0
      GO TO 240
C
 60   CALL DV7SCP(P, V(G1), ZERO)
      IF (IV(MODE) .GT. 0) GO TO 230
      RMAT1 = IV(RMAT)
      QTR1 = IV(QTR)
      RD1 = QTR1 + P
      CALL DV7SCP(P, V(QTR1), ZERO)
      IV(REGD) = 0
      IF (ND .LT. N) GO TO 90
      IF (N1 .NE. 1) GO TO 90
      IF (IV(MODE) .LT. 0) GO TO 100
      IF (IV(NF1) .EQ. IV(NFGCAL)) GO TO 70
       IF (IV(NF0) .NE. IV(NFGCAL)) GO TO 90
          CALL DV7CPY(N, R, RD)
          GO TO 80
 70   CALL DV7CPY(N, RD, R)
 80   CALL DQ7APL(ND, N, P, DR, RD, 0)
      CALL DR7TVM(ND, MIN0(N,P), V(Y1), V(RD1), DR, RD)
      IV(REGD) = 0
      GO TO 110
C
 90   IV(1) = -2
      IF (IV(MODE) .LT. 0) IV(1) = -3
 100  CALL DV7SCP(P, V(Y1), ZERO)
 110  CALL DV7SCP(LH, V(RMAT1), ZERO)
      GO TO 240
C
C  ***  COMPUTE F(X)  ***
C
 120  T = DV2NRM(NN, R)
      IF (T .GT. V(RLIMIT)) GO TO 210
      V(F) = V(F)  +  HALF * T**2
      IF (N2 .LT. N) GO TO 250
      IF (N1 .EQ. 1) IV(NF1) = IV(NFCALL)
      GO TO 40
C
C  ***  COMPUTE Y  ***
C
 130  Y1 = IV(G) + P
      YI = Y1
      DO 140 L = 1, P
       V(YI) = V(YI) + DD7TPR(NN, DR(1,L), R)
       YI = YI + 1
 140     CONTINUE
      IF (N2 .LT. N) GO TO 250
       IV(1) = 2
       IF (N1 .GT. 1) IV(1) = -3
       GO TO 240
C
C  ***  COMPUTE GRADIENT INFORMATION  ***
C
 150  G1 = IV(G)
      IVMODE = IV(MODE)
      IF (IVMODE .LT. 0) GO TO 170
      IF (IVMODE .EQ. 0) GO TO 180
      IV(1) = 2
C
C  ***  COMPUTE GRADIENT ONLY (FOR USE IN COVARIANCE COMPUTATION)  ***
C
      GI = G1
      DO 160 L = 1, P
       V(GI) = V(GI) + DD7TPR(NN, R, DR(1,L))
       GI = GI + 1
 160     CONTINUE
      GO TO 200
C
C  *** COMPUTE INITIAL FUNCTION VALUE WHEN ND .LT. N ***
C
 170  IF (N .LE. ND) GO TO 180
       T = DV2NRM(NN, R)
       IF (T .GT. V(RLIMIT)) GO TO 210
       V(F) = V(F)  +  HALF * T**2
C
C  ***  UPDATE D IF DESIRED  ***
C
 180  IF (IV(DTYPE) .GT. 0)
     1      CALL DD7UPD(D, DR, IV, LIV, LV, N, ND, NN, N2, P, V)
C
C  ***  COMPUTE RMAT AND QTR  ***
C
      QTR1 = IV(QTR)
      RMAT1 = IV(RMAT)
      CALL DQ7RAD(NN, ND, P, V(QTR1), .TRUE., V(RMAT1), DR, R)
      IV(NF1) = 0
      IF (N1 .GT. 1) GO TO 200
      IF (N2 .LT. N) GO TO 250
C
C  ***  SAVE DIAGONAL OF R FOR COMPUTING Y LATER  ***
C
      RD1 = QTR1 + P
      L = RMAT1 - 1
      DO 190 I = 1, P
       L = L + I
       V(RD1) = V(L)
       RD1 = RD1 + 1
 190     CONTINUE
C
 200  IF (N2 .LT. N) GO TO 250
      IF (IVMODE .GT. 0) GO TO 40
      IV(NF00) = IV(NFGCAL)
C
C  ***  COMPUTE G FROM RMAT AND QTR  ***
C
      CALL DL7VML(P, V(G1), V(RMAT1), V(QTR1))
      IV(1) = 2
      IF (IVMODE .EQ. 0) GO TO 40
      IF (N .LE. ND) GO TO 40
C
C  ***  FINISH SPECIAL CASE HANDLING OF FIRST FUNCTION AND GRADIENT
C
      Y1 = G1 + P
      IV(1) = 1
      CALL DG7ITB(B, D, V(G1), IV, LIV, LV, P, P, V, X, V(Y1))
      IF (IV(1) .NE. 2) GO TO 260
      GO TO 40
C
C  ***  MISC. DETAILS  ***
C
C     ***  X IS OUT OF RANGE (OVERSIZE STEP)  ***
C
 210  IV(TOOBIG) = 1
      GO TO 40
C
C     ***  BAD N, ND, OR P  ***
C
 220  IV(1) = 66
      GO TO 270
C
C  ***  RECORD EXTRA EVALUATIONS FOR FINITE-DIFFERENCE HESSIAN  ***
C
 230  IV(NFCOV) = IV(NFCOV) + 1
      IV(NFCALL) = IV(NFCALL) + 1
      IV(NFGCAL) = IV(NFCALL)
      IV(1) = -1
C
C  ***  RETURN FOR MORE FUNCTION OR GRADIENT INFORMATION  ***
C
 240  N2 = 0
 250  N1 = N2 + 1
      N2 = N2 + ND
      IF (N2 .GT. N) N2 = N
      GO TO 999
C
C  ***  PRINT SUMMARY OF FINAL ITERATION AND OTHER REQUESTED ITEMS  ***
C
 260  G1 = IV(G)
 270  CALL DITSUM(D, V(G1), IV, LIV, LV, P, V, X)
C
 999  RETURN
C  ***  LAST CARD OF DRN2GB FOLLOWS  ***
      END
      SUBROUTINE DD7DGB(B, D, DIG, DST, G, IPIV, KA, L, LV, P, PC,
     1                    NWTST, STEP, TD, TG, V, W, X0)
C
C  ***  COMPUTE DOUBLE-DOGLEG STEP, SUBJECT TO SIMPLE BOUNDS ON X  ***
C
      INTEGER LV, KA, P, PC
      INTEGER IPIV(P)
      DOUBLE PRECISION B(2,P), D(P), DIG(P), DST(P), G(P), L(1),
     1                 NWTST(P), STEP(P), TD(P), TG(P), V(LV), W(P),
     2                 X0(P)
C
C     DIMENSION L(P*(P+1)/2)
C
      DOUBLE PRECISION DD7TPR, DR7MDC, DV2NRM
      EXTERNAL DD7DOG, DD7TPR, I7SHFT, DL7ITV, DL7IVM, DL7TVM,DL7VML,
     1         DQ7RSH, DR7MDC, DV2NRM,DV2AXY,DV7CPY, DV7IPR, DV7SCP,
     2         DV7SHF, DV7VMP
C
C  ***  LOCAL VARIABLES  ***
C
      INTEGER I, J, K, P1, P1M1
      DOUBLE PRECISION DNWTST, GHINVG, GNORM, GNORM0, NRED, PRED, RAD,
     1                 T, T1, T2, TI, X0I, XI
      DOUBLE PRECISION HALF, MEPS2, ONE, TWO, ZERO
C
C  ***  V SUBSCRIPTS  ***
C
      INTEGER DGNORM, DST0, DSTNRM, GRDFAC, GTHG, GTSTEP, NREDUC,
     1        NWTFAC, PREDUC, RADIUS, STPPAR
C
      PARAMETER (DGNORM=1, DST0=3, DSTNRM=2, GRDFAC=45, GTHG=44,
     1           GTSTEP=4, NREDUC=6, NWTFAC=46, PREDUC=7, RADIUS=8,
     2           STPPAR=5)
      PARAMETER (HALF=0.5D+0, ONE=1.D+0, TWO=2.D+0, ZERO=0.D+0)
      SAVE MEPS2
      DATA MEPS2/0.D+0/
C
C+++++++++++++++++++++++++++++++  BODY  ++++++++++++++++++++++++++++++++
C
      IF (MEPS2 .LE. ZERO) MEPS2 = TWO * DR7MDC(3)
      GNORM0 = V(DGNORM)
      V(DSTNRM) = ZERO
      IF (KA .LT. 0) GO TO 10
       DNWTST = V(DST0)
       NRED = V(NREDUC)
 10   PRED = ZERO
      V(STPPAR) = ZERO
      RAD = V(RADIUS)
      IF (PC .GT. 0) GO TO 20
       DNWTST = ZERO
       CALL DV7SCP(P, STEP, ZERO)
       GO TO 140
C
 20   P1 = PC
      CALL DV7CPY(P, TD, D)
      CALL DV7IPR(P, IPIV, TD)
      CALL DV7SCP(PC, DST, ZERO)
      CALL DV7CPY(P, TG, G)
      CALL DV7IPR(P, IPIV, TG)
C
 30   CALL DL7IVM(P1, NWTST, L, TG)
      GHINVG = DD7TPR(P1, NWTST, NWTST)
      V(NREDUC) = HALF * GHINVG
      CALL DL7ITV(P1, NWTST, L, NWTST)
      CALL DV7VMP(P1, STEP, NWTST, TD, 1)
      V(DST0) = DV2NRM(PC, STEP)
      IF (KA .GE. 0) GO TO 40
       KA = 0
       DNWTST = V(DST0)
       NRED = V(NREDUC)
 40   V(RADIUS) = RAD - V(DSTNRM)
      IF (V(RADIUS) .LE. ZERO) GO TO 100
      CALL DV7VMP(P1, DIG, TG, TD, -1)
      GNORM = DV2NRM(P1, DIG)
      IF (GNORM .LE. ZERO) GO TO 100
      V(DGNORM) = GNORM
      CALL DV7VMP(P1, DIG, DIG, TD, -1)
      CALL DL7TVM(P1, W, L, DIG)
      V(GTHG) = DV2NRM(P1, W)
      KA = KA + 1
      CALL DD7DOG(DIG, LV, P1, NWTST, STEP, V)
C
C     ***  FIND T SUCH THAT X - T*STEP IS STILL FEASIBLE.
C
      T = ONE
      K = 0
      DO 70 I = 1, P1
       J = IPIV(I)
       X0I = X0(J) + DST(I)/TD(I)
       XI = X0I + STEP(I)
       IF (XI .LT. B(1,J)) GO TO 50
       IF (XI .LE. B(2,J)) GO TO 70
            TI = (B(2,J) - X0I) / STEP(I)
            J = I
            GO TO 60
 50      TI = (B(1,J) - X0I) / STEP(I)
       J = -I
 60      IF (T .LE. TI) GO TO 70
            K = J
            T = TI
 70      CONTINUE
C
C  ***  UPDATE DST, TG, AND PRED  ***
C
      CALL DV7VMP(P1, STEP, STEP, TD, 1)
      CALL DV2AXY(P1, DST, T, STEP, DST)
      V(DSTNRM) = DV2NRM(PC, DST)
      T1 = T * V(GRDFAC)
      T2 = T * V(NWTFAC)
      PRED = PRED - T1*GNORM * ((T2 + ONE)*GNORM)
     1                 - T2 * (ONE + HALF*T2)*GHINVG
     2                  - HALF * (V(GTHG)*T1)**2
      IF (K .EQ. 0) GO TO 100
      CALL DL7VML(P1, W, L, W)
      T2 = ONE - T2
      DO 80 I = 1, P1
 80      TG(I) = T2*TG(I) - T1*W(I)
C
C     ***  PERMUTE L, ETC. IF NECESSARY  ***
C
      P1M1 = P1 - 1
      J = IABS(K)
      IF (J .EQ. P1) GO TO 90
       CALL DQ7RSH(J, P1, .FALSE., TG, L, W)
       CALL I7SHFT(P1, J, IPIV)
       CALL DV7SHF(P1, J, TG)
       CALL DV7SHF(P1, J, TD)
       CALL DV7SHF(P1, J, DST)
 90   IF (K .LT. 0) IPIV(P1) = -IPIV(P1)
      P1 = P1M1
      IF (P1 .GT. 0) GO TO 30
C
C     ***  UNSCALE STEP, UPDATE X AND DIHDI  ***
C
 100  CALL DV7SCP(P, STEP, ZERO)
      DO 110 I = 1, PC
       J = IABS(IPIV(I))
       STEP(J) = DST(I) / TD(I)
 110     CONTINUE
C
C  ***  FUDGE STEP TO ENSURE THAT IT FORCES APPROPRIATE COMPONENTS
C  ***  TO THEIR BOUNDS  ***
C
      IF (P1 .GE. PC) GO TO 140
      CALL DV2AXY(P, TD, ONE, STEP, X0)
      K = P1 + 1
      DO 130 I = K, PC
       J = IPIV(I)
       T = MEPS2
       IF (J .GT. 0) GO TO 120
          T = -T
          J = -J
          IPIV(I) = J
 120     T = T * DMAX1(DABS(TD(J)), DABS(X0(J)))
       STEP(J) = STEP(J) + T
 130     CONTINUE
C
 140  V(DGNORM) = GNORM0
      V(NREDUC) = NRED
      V(PREDUC) = PRED
      V(RADIUS) = RAD
      V(DST0) = DNWTST
      V(GTSTEP) = DD7TPR(P, STEP, G)
C
      RETURN
C  ***  LAST LINE OF DD7DGB FOLLOWS  ***
      END
      SUBROUTINE DQ7RFH(IERR, IPIVOT, N, NN, NOPIVK, P, Q, R, RLEN, W)
C
C  ***  COMPUTE QR FACTORIZATION VIA HOUSEHOLDER TRANSFORMATIONS
C  ***  WITH COLUMN PIVOTING  ***
C
C  ***  PARAMETER DECLARATIONS  ***
C
      INTEGER IERR, N, NN, NOPIVK, P, RLEN
      INTEGER IPIVOT(P)
      DOUBLE PRECISION Q(NN,P), R(RLEN), W(P)
C     DIMENSION R(P*(P+1)/2)
C
C----------------------------  DESCRIPTION  ----------------------------
C
C    THIS ROUTINE COMPUTES A QR FACTORIZATION (VIA HOUSEHOLDER TRANS-
C FORMATIONS) OF THE MATRIX  A  THAT ON INPUT IS STORED IN Q.
C IF  NOPIVK  ALLOWS IT, THIS ROUTINE DOES COLUMN PIVOTING -- IF
C K .GT. NOPIVK,  THEN ORIGINAL COLUMN  K  IS ELIGIBLE FOR PIVOTING.
C THE  Q  AND  R  RETURNED ARE SUCH THAT COLUMN  I  OF  Q*R  EQUALS
C COLUMN  IPIVOT(I)  OF THE ORIGINAL MATRIX  A.  THE UPPER TRIANGULAR
C MATRIX  R  IS STORED COMPACTLY BY COLUMNS, I.E., THE OUTPUT VECTOR  R
C CONTAINS  R(1,1), R(1,2), R(2,2), R(1,3), R(2,3), ..., R(P,P) (IN
C THAT ORDER).  IF ALL GOES WELL, THEN THIS ROUTINE SETS  IERR = 0.
C BUT IF (PERMUTED) COLUMN  K  OF  A  IS LINEARLY DEPENDENT ON
C (PERMUTED) COLUMNS 1,2,...,K-1, THEN  IERR  IS SET TO  K AND THE R
C MATRIX RETURNED HAS  R(I,J) = 0  FOR  I .GE. K  AND  J .GE. K.
C    THE ORIGINAL MATRIX  A  IS AN N BY P MATRIX.  NN  IS THE LEAD
C DIMENSION OF THE ARRAY  Q  AND MUST SATISFY  NN .GE. N.  NO
C PARAMETER CHECKING IS DONE.
C    PIVOTING IS DONE AS THOUGH ALL COLUMNS OF Q WERE FIRST
C SCALED TO HAVE THE SAME NORM.  IF COLUMN K IS ELIGIBLE FOR
C PIVOTING AND ITS (SCALED) NORM**2 LOSS IS MORE THAN THE
C MINIMUM SUCH LOSS (OVER COLUMNS K THRU P), THEN COLUMN K IS
C SWAPPED WITH THE COLUMN OF LEAST NORM**2 LOSS.
C
C        CODED BY DAVID M. GAY (FALL 1979, SPRING 1984).
C
C--------------------------  LOCAL VARIABLES  --------------------------
C
      INTEGER I, II, J, K, KK, KM1, KP1, NK1
      DOUBLE PRECISION AK, QKK, S, SINGTL, T, T1, WK
      DOUBLE PRECISION DD7TPR, DR7MDC, DV2NRM
      EXTERNAL DD7TPR, DR7MDC,DV2AXY, DV7SCL, DV7SCP,DV7SWP, DV2NRM
C/+
      DOUBLE PRECISION DSQRT
C/
      DOUBLE PRECISION BIG, BIGRT, MEPS10, ONE, TEN, TINY, TINYRT,
     1                 WTOL, ZERO
      PARAMETER (ONE=1.0D+0, TEN=1.D+1, WTOL=0.75D+0, ZERO=0.0D+0)
      SAVE BIGRT, MEPS10, TINY, TINYRT
      DATA BIGRT/0.0D+0/, MEPS10/0.0D+0/, TINY/0.D+0/, TINYRT/0.D+0/
C
C+++++++++++++++++++++++++++++++  BODY  ++++++++++++++++++++++++++++++++
C
      IERR = 0
      IF (MEPS10 .GT. ZERO) GO TO 10
        BIGRT = DR7MDC(5)
        MEPS10 = TEN * DR7MDC(3)
        TINYRT = DR7MDC(2)
        TINY = DR7MDC(1)
        BIG = DR7MDC(6)
        IF (TINY*BIG .LT. ONE) TINY = ONE / BIG
 10   SINGTL = DBLE(MAX0(N,P)) * MEPS10
C
C  ***  INITIALIZE W, IPIVOT, AND DIAG(R)  ***
C
      J = 0
      DO 40 I = 1, P
       IPIVOT(I) = I
       T = DV2NRM(N, Q(1,I))
       IF (T .GT. ZERO) GO TO 20
            W(I) = ONE
            GO TO 30
 20      W(I) = ZERO
 30      J = J + I
       R(J) = T
 40      CONTINUE
C
C  ***  MAIN LOOP  ***
C
      KK = 0
      NK1 = N + 1
      DO 130 K = 1, P
       IF (NK1 .LE. 1) GO TO 999
       NK1 = NK1 - 1
       KK = KK + K
       KP1 = K + 1
       IF (K .LE. NOPIVK) GO TO 60
       IF (K .GE. P) GO TO 60
C
C        ***  FIND COLUMN WITH MINIMUM WEIGHT LOSS  ***
C
            T = W(K)
            IF (T .LE. ZERO) GO TO 60
            J = K
            DO 50 I = KP1, P
               IF (W(I) .GE. T) GO TO 50
                  T = W(I)
                  J = I
 50                CONTINUE
            IF (J .EQ. K) GO TO 60
C
C             ***  INTERCHANGE COLUMNS K AND J  ***
C
               I = IPIVOT(K)
               IPIVOT(K) = IPIVOT(J)
               IPIVOT(J) = I
               W(J) = W(K)
               W(K) = T
               I = J*(J+1)/2
               T1 = R(I)
               R(I) = R(KK)
               R(KK) = T1
               CALL DV7SWP(N, Q(1,K), Q(1,J))
               IF (K .LE. 1) GO TO 60
                  I = I - J + 1
                  J = KK - K + 1
                  CALL DV7SWP(K-1, R(I), R(J))
C
C        ***  COLUMN K OF Q SHOULD BE NEARLY ORTHOGONAL TO THE PREVIOUS
C        ***  COLUMNS.  NORMALIZE IT, TEST FOR SINGULARITY, AND DECIDE
C        ***  WHETHER TO REORTHOGONALIZE IT.
C
 60      AK = R(KK)
       IF (AK .LE. ZERO) GO TO 140
       WK = W(K)
C
C        *** SET T TO THE NORM OF (Q(K,K),...,Q(N,K))
C        *** AND CHECK FOR SINGULARITY.
C
       IF (WK .LT. WTOL) GO TO 70
          T = DV2NRM(NK1, Q(K,K))
          IF (T / AK .LE. SINGTL) GO TO 140
          GO TO 80
 70      T = DSQRT(ONE - WK)
       IF (T .LE. SINGTL) GO TO 140
       T = T * AK
C
C        *** DETERMINE HOUSEHOLDER TRANSFORMATION ***
C
 80      QKK = Q(K,K)
       IF (T .LE. TINYRT) GO TO 90
       IF (T .GE. BIGRT) GO TO 90
          IF (QKK .LT. ZERO) T = -T
          QKK = QKK + T
          S = DSQRT(T * QKK)
          GO TO 110
 90       S = DSQRT(T)
        IF (QKK .LT. ZERO) GO TO 100
           QKK = QKK + T
           S = S * DSQRT(QKK)
           GO TO 110
 100      T = -T
        QKK = QKK + T
        S = S * DSQRT(-QKK)
 110      Q(K,K) = QKK
C
C         ***  SCALE (Q(K,K),...,Q(N,K)) TO HAVE NORM SQRT(2)  ***
C
        IF (S .LE. TINY) GO TO 140
        CALL DV7SCL(NK1, Q(K,K), ONE/S, Q(K,K))
C
        R(KK) = -T
C
C        ***  COMPUTE R(K,I) FOR I = K+1,...,P AND UPDATE Q  ***
C
       IF (K .GE. P) GO TO 999
       J = KK + K
       II = KK
       DO 120 I = KP1, P
            II = II + I
            CALL DV2AXY(NK1, Q(K,I), -DD7TPR(NK1,Q(K,K),Q(K,I)),
     1                   Q(K,K), Q(K,I))
            T = Q(K,I)
            R(J) = T
            J = J + I
            T1 = R(II)
            IF (T1 .GT. ZERO)  W(I) = W(I) + (T/T1)**2
 120          CONTINUE
 130     CONTINUE
C
C  ***  SINGULAR Q  ***
C
 140  IERR = K
      KM1 = K - 1
      J = KK
      DO 150 I = K, P
       CALL DV7SCP(I-KM1, R(J), ZERO)
       J = J + I
 150     CONTINUE
C
 999  RETURN
C  ***  LAST CARD OF DQ7RFH FOLLOWS  ***
      END
      SUBROUTINE DF7DHB(B, D, G, IRT, IV, LIV, LV, P, V, X)
C
C  ***  COMPUTE FINITE-DIFFERENCE HESSIAN, STORE IT IN V STARTING
C  ***  AT V(IV(FDH)) = V(-IV(H)).  HONOR SIMPLE BOUNDS IN B.
C
C  ***  IF IV(COVREQ) .GE. 0 THEN DF7DHB USES GRADIENT DIFFERENCES,
C  ***  OTHERWISE FUNCTION DIFFERENCES.  STORAGE IN V IS AS IN DG7LIT.
C
C IRT VALUES...
C     1 = COMPUTE FUNCTION VALUE, I.E., V(F).
C     2 = COMPUTE G.
C     3 = DONE.
C
C
C  ***  PARAMETER DECLARATIONS  ***
C
      INTEGER IRT, LIV, LV, P
      INTEGER IV(LIV)
      DOUBLE PRECISION B(2,P), D(P), G(P), V(LV), X(P)
C
C  ***  LOCAL VARIABLES  ***
C
      LOGICAL OFFSID
      INTEGER GSAVE1, HES, HMI, HPI, HPM, I, K, KIND, L, M, MM1, MM1O2,
     1        NEWM1, PP1O2, STPI, STPM, STP0
      DOUBLE PRECISION DEL, DEL0, T, XM, XM1
      DOUBLE PRECISION HALF, HLIM, ONE, TWO, ZERO
C
C  ***  EXTERNAL SUBROUTINES  ***
C
      EXTERNAL DV7CPY, DV7SCP
C
C DV7CPY.... COPY ONE VECTOR TO ANOTHER.
C DV7SCP... COPY SCALAR TO ALL COMPONENTS OF A VECTOR.
C
C  ***  SUBSCRIPTS FOR IV AND V  ***
C
      INTEGER COVREQ, DELTA, DELTA0, DLTFDC, F, FDH, FX, H, KAGQT, MODE,
     1        NFGCAL, SAVEI, SWITCH, TOOBIG, W, XMSAVE
C
      PARAMETER (HALF=0.5D+0, HLIM=0.1D+0, ONE=1.D+0, TWO=2.D+0,
     1           ZERO=0.D+0)
C
      PARAMETER (COVREQ=15, DELTA=52, DELTA0=44, DLTFDC=42, F=10,
     1           FDH=74, FX=53, H=56, KAGQT=33, MODE=35, NFGCAL=7,
     2           SAVEI=63, SWITCH=12, TOOBIG=2, W=65, XMSAVE=51)
C
C+++++++++++++++++++++++++++++++  BODY  ++++++++++++++++++++++++++++++++
C
      IRT = 4
      KIND = IV(COVREQ)
      M = IV(MODE)
      IF (M .GT. 0) GO TO 10
       HES = IABS(IV(H))
       IV(H) = -HES
       IV(FDH) = 0
       IV(KAGQT) = -1
       V(FX) = V(F)
C        *** SUPPLY ZEROS IN CASE B(1,I) = B(2,I) FOR SOME I ***
       CALL DV7SCP(P*(P+1)/2, V(HES), ZERO)
 10   IF (M .GT. P) GO TO 999
      IF (KIND .LT. 0) GO TO 120
C
C  ***  COMPUTE FINITE-DIFFERENCE HESSIAN USING BOTH FUNCTION AND
C  ***  GRADIENT VALUES.
C
      GSAVE1 = IV(W) + P
      IF (M .GT. 0) GO TO 20
C        ***  FIRST CALL ON DF7DHB.  SET GSAVE = G, TAKE FIRST STEP  ***
       CALL DV7CPY(P, V(GSAVE1), G)
       IV(SWITCH) = IV(NFGCAL)
       GO TO 80
C
 20   DEL = V(DELTA)
      X(M) = V(XMSAVE)
      IF (IV(TOOBIG) .EQ. 0) GO TO 30
C
C     ***  HANDLE OVERSIZE V(DELTA)  ***
C
       DEL0 = V(DELTA0) * DMAX1(ONE/D(M), DABS(X(M)))
       DEL = HALF * DEL
       IF (DABS(DEL/DEL0) .LE. HLIM) GO TO 140
C
 30   HES = -IV(H)
C
C  ***  SET  G = (G - GSAVE)/DEL  ***
C
      DEL = ONE / DEL
      DO 40 I = 1, P
       G(I) = DEL * (G(I) - V(GSAVE1))
       GSAVE1 = GSAVE1 + 1
 40      CONTINUE
C
C  ***  ADD G AS NEW COL. TO FINITE-DIFF. HESSIAN MATRIX  ***
C
      K = HES + M*(M-1)/2
      L = K + M - 2
      IF (M .EQ. 1) GO TO 60
C
C  ***  SET  H(I,M) = 0.5 * (H(I,M) + G(I))  FOR I = 1 TO M-1  ***
C
      MM1 = M - 1
      DO 50 I = 1, MM1
       IF (B(1,I) .LT. B(2,I)) V(K) = HALF * (V(K) + G(I))
       K = K + 1
 50      CONTINUE
C
C  ***  ADD  H(I,M) = G(I)  FOR I = M TO P  ***
C
 60   L = L + 1
      DO 70 I = M, P
       IF (B(1,I) .LT. B(2,I)) V(L) = G(I)
       L = L + I
 70      CONTINUE
C
 80   M = M + 1
      IV(MODE) = M
      IF (M .GT. P) GO TO 340
      IF (B(1,M) .GE. B(2,M)) GO TO 80
C
C  ***  CHOOSE NEXT FINITE-DIFFERENCE STEP, RETURN TO GET G THERE  ***
C
      DEL = V(DELTA0) * DMAX1(ONE/D(M), DABS(X(M)))
      XM = X(M)
      IF (XM .LT. ZERO) GO TO 90
       XM1 = XM + DEL
       IF (XM1 .LE. B(2,M)) GO TO 110
         XM1 = XM - DEL
         IF (XM1 .GE. B(1,M)) GO TO 100
         GO TO 280
 90    XM1 = XM - DEL
       IF (XM1 .GE. B(1,M)) GO TO 100
       XM1 = XM + DEL
       IF (XM1 .LE. B(2,M)) GO TO 110
       GO TO 280
C
 100  DEL = -DEL
 110  V(XMSAVE) = XM
      X(M) = XM1
      V(DELTA) = DEL
      IRT = 2
      GO TO 999
C
C  ***  COMPUTE FINITE-DIFFERENCE HESSIAN USING FUNCTION VALUES ONLY.
C
 120  STP0 = IV(W) + P - 1
      MM1 = M - 1
      MM1O2 = M*MM1/2
      HES = -IV(H)
      IF (M .GT. 0) GO TO 130
C        ***  FIRST CALL ON DF7DHB.  ***
       IV(SAVEI) = 0
       GO TO 240
C
 130  IF (IV(TOOBIG) .EQ. 0) GO TO 150
C        ***  PUNT IN THE EVENT OF AN OVERSIZE STEP  ***
 140     IV(FDH) = -2
       GO TO 350
 150  I = IV(SAVEI)
      IF (I .GT. 0) GO TO 190
C
C  ***  SAVE F(X + STP(M)*E(M)) IN H(P,M)  ***
C
      PP1O2 = P * (P-1) / 2
      HPM = HES + PP1O2 + MM1
      V(HPM) = V(F)
C
C  ***  START COMPUTING ROW M OF THE FINITE-DIFFERENCE HESSIAN H.  ***
C
      NEWM1 = 1
      GO TO 260
 160  HMI = HES + MM1O2
      IF (MM1 .EQ. 0) GO TO 180
      HPI = HES + PP1O2
      DO 170 I = 1, MM1
       T = ZERO
       IF (B(1,I) .LT. B(2,I)) T = V(FX) - (V(F) + V(HPI))
       V(HMI) = T
       HMI = HMI + 1
       HPI = HPI + 1
 170     CONTINUE
 180  V(HMI) = V(F) - TWO*V(FX)
      IF (OFFSID) V(HMI) = V(FX) - TWO*V(F)
C
C  ***  COMPUTE FUNCTION VALUES NEEDED TO COMPLETE ROW M OF H.  ***
C
      I = 0
      GO TO 200
C
 190  X(I) = V(DELTA)
C
C  ***  FINISH COMPUTING H(M,I)  ***
C
      STPI = STP0 + I
      HMI = HES + MM1O2 + I - 1
      STPM = STP0 + M
      V(HMI) = (V(HMI) + V(F)) / (V(STPI)*V(STPM))
 200  I = I + 1
      IF (I .GT. M) GO TO 230
       IF (B(1,I) .LT. B(2,I)) GO TO 210
       GO TO 200
C
 210  IV(SAVEI) = I
      STPI = STP0 + I
      V(DELTA) = X(I)
      X(I) = X(I) + V(STPI)
      IRT = 1
      IF (I .LT. M) GO TO 999
      NEWM1 = 2
      GO TO 260
 220  X(M) = V(XMSAVE) - DEL
      IF (OFFSID) X(M) = V(XMSAVE) + TWO*DEL
      GO TO 999
C
 230  IV(SAVEI) = 0
      X(M) = V(XMSAVE)
C
 240  M = M + 1
      IV(MODE) = M
      IF (M .GT. P) GO TO 330
      IF (B(1,M) .LT. B(2,M)) GO TO 250
      GO TO 240
C
C  ***  PREPARE TO COMPUTE ROW M OF THE FINITE-DIFFERENCE HESSIAN H.
C  ***  COMPUTE M-TH STEP SIZE STP(M), THEN RETURN TO OBTAIN
C  ***  F(X + STP(M)*E(M)), WHERE E(M) = M-TH STD. UNIT VECTOR.
C
 250  V(XMSAVE) = X(M)
      NEWM1 = 3
 260  XM = V(XMSAVE)
      DEL = V(DLTFDC) * DMAX1(ONE/D(M), DABS(XM))
      XM1 = XM + DEL
      OFFSID = .FALSE.
      IF (XM1 .LE. B(2,M)) GO TO 270
       OFFSID = .TRUE.
       XM1 = XM - DEL
       IF (XM - TWO*DEL .GE. B(1,M)) GO TO 300
       GO TO 280
 270   IF (XM-DEL .GE. B(1,M)) GO TO 290
       OFFSID = .TRUE.
       IF (XM + TWO*DEL .LE. B(2,M)) GO TO 310
C
 280  IV(FDH) = -2
      GO TO 350
C
 290  IF (XM .GE. ZERO) GO TO 310
      XM1 = XM - DEL
 300  DEL = -DEL
 310  GO TO (160, 220, 320), NEWM1
 320  X(M) = XM1
      STPM = STP0 + M
      V(STPM) = DEL
      IRT = 1
      GO TO 999
C
C  ***  HANDLE SPECIAL CASE OF B(1,P) = B(2,P) -- CLEAR SCRATCH VALUES
C  ***  FROM LAST ROW OF FDH...
C
 330  IF (B(1,P) .LT. B(2,P)) GO TO 340
       I = HES + P*(P-1)/2
       CALL DV7SCP(P, V(I), ZERO)
C
C  ***  RESTORE V(F), ETC.  ***
C
 340  IV(FDH) = HES
 350  V(F) = V(FX)
      IRT = 3
      IF (KIND .LT. 0) GO TO 999
       IV(NFGCAL) = IV(SWITCH)
       GSAVE1 = IV(W) + P
       CALL DV7CPY(P, G, V(GSAVE1))
       GO TO 999
C
 999  RETURN
C  ***  LAST LINE OF DF7DHB FOLLOWS  ***
      END

Generated by  Doxygen 1.6.0   Back to index